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This paper describes the Core and Periphery technique, a quantitative method for exploring
areality that uses a naive Bayes classifier, a statistical tool for inferring class membership based
on training sets assembled from members of those classes. The Core and Periphery technique
is applied to the exploration of phonological areality in the Andes and surrounding lowland
regions, based on the South American Phonological Inventory Database (SAPhon 1.1.3; Michael
et al., 2013). Evidence is found for a phonological area centering on the Andean highlands,
and extending to parts of the northern and central Andean foothills regions, the Chaco, and
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within this larger phonological area.
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1. Introduction

The goals of this paper are to describe the Core and Periphery technique, an intuitively
appealing quantitative method for exploring large linguistic datasets for evidence of
linguistic areality, and to illustrate the utility of this technique by applying it to a dataset
of South American phonological inventories, focusing on the evidence of phonological
areality in the Andes and surrounding lowland areas.

Core and Periphery is a method that uses as a starting point linguists’ knowl-
edge of the languages and history of a region to generate initial hypotheses regarding
‘cores’: sets of languages that constitute possible linguistic areas (Campbell et al., 1986;
Thomason, 2000; Muysken, 2008), or parts of ones. These hypotheses serve as the seed
for the application of a statistical technique, naive Bayes classification (NBC), which
determines what features, if any, distinguish the core languages from other languages
in the region, and also to what degree languages outside the proposed core resemble
the core languages. Those languages deemed core-like, together with the proposed core,
constitute a candidate linguistic area, to be evaluated against pertinent sociohistorical
and geographical facts. If the languages deemed core-like fail to make sense geograph-
ically, then the Core and Periphery technique has failed to identify a linguistic area
around the proposed core.

The Core and Periphery technique improves on conventional practices of ‘eye-
balling’ areas in three ways. First, it provides a quantitative evaluation of the degree
to which the languages of a proposed area in fact exhibit features that distinguish them
from the languages of the larger region of which the proposed area forms a part. Second,



it provides a quantitative measure of similarity between languages that can be applied
to large datasets, allowing linguists to locate unexpected similarities that help identify
new areas or redefine accepted ones. And third, quantitative measures of similarity also
make it possible to visualize and cogently discuss the structure of linguistic areas whose
boundaries are gradient in nature. Note, however, that Core and Periphery is not strictly
speaking a statistical test of areality, a point we return to in §6.

In this paper carry out two different Core and Periphery explorations of phono-
logical areality in the circum-Andean region, first treating the entire Andean highlands
from northern Chile to northern Ecuador as a single core, and then treating the Andean
highlands as being constituted of two cores, a Southern Andean core and a North-
Central Andean core. The dividing line between the latter two cores runs through
the southern Peruvian Andes, grouping Cuzco-Collao Quechua and Jaqaru with the
Southern Andean core, while the remaining Quechuan languages constitute the North-
Central core. This dual core analysis is motivated by the qualitative observation that
the Southern Andean languages, delimited in this way, share a number of phonological
characteristics otherwise rare in South America, including a three-way contrast between
plain, aspirated, and ejective stops.

The single core analysis reveals several clusters of languages in the Andean foothills
and adjacent lowland regions that pattern more strongly with the languages of the
Andean core than other lowland languages, including an Ecuadorean Andean foothills
cluster, a Huallaga River valley cluster, a cluster of Arawak languages of the southern
Peruvian Andean foothills, and a cluster of Chacoan and Patagonian languages. These
results support the existence of a large South American phonological area that encom-
passes the Andean highlands and parts of the Andean foothills regions, with a tongue
that extends from the Southern Andes into the Chaco and Patagonia.

The dual core analysis builds on the single core analysis by revealing a finer struc-
ture to this area, showing that the non-Andean languages which exhibit similarity to
Andean languages generally resemble those of the core to which they are most prox-
imally located, with the relevant Chacoan and Patagonian languages resembling the
those of the Southern core, and the relevant languages of Peru and Ecuador resembling
those of the North-Central core.

This paper is organized as follows: §2 presents a qualitative overview of the Core
and Periphery technique, and §3 presents the data to which this technique is applied, as
well as the overall goals of the analysis. A more technical description of the statistical
technique underlying the Core and Periphery technique, the naive Bayes classifer, is
provided in §4, with additional details provided in §B.1–B.3. The results of single and
dual core analyses are presented and examined in §5, and §6 evaluates the Core and
Periphery technique, discussing its strengths and weaknesses.

2. The Core and Periphery technique: A qualitative overview

The basic strategy for exploring phonological areality implemented by the Core and
Periphery technique is to use a measure of inter-language similarity to bootstrap from a
given set of geographically clustered and phonologically similar languages (the ‘pro-
posed core’) to a larger set of similar languages (the ‘core and periphery’) that are
deemed to form a quantitatively consistent linguistic area.

In a one-core analysis, the first step is to divide the languages of a region (South
America, in our case) into three sets: a proposed core, a control class, and an equivocal
class. The proposed core is a set of languages that are hypothesized to form a part of
a larger linguistic area. The control set consists of languages that are unlikely to have
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been in contact with the core languages, and are therefore deemed unlikely to belong
to the core or periphery ex hypothesi.1 The equivocal class is that about which nothing is
claimed in advance.

Motivations for choosing a proposed core may include ethnographic or historical
observations that suggest the existence of a culture area, intuitions regarding areality
based on ‘eyeballing’ the linguistic data, or even previous proposals that the core
constitutes a linguistic area. As will become clear, the original rationale for selecting
a particular core is unimportant for the operation of the quantitative analysis described
below, since the results of that analysis will indicate whether the proposed core in fact
constitutes a distinctive and homogeneous sub-area of a larger linguistic area.

Choosing the control class entails identifying a set of languages that are unlikely
to have been influenced by contact with the core languages. The ultimate choice of
non-core or ‘control’ languages depends a great deal on the analyst’s knowledge of
the history and geography of the region, but we have generally allowed the possibility
of quite distant linguistic influence, leading us to select control regions that are quite
distant from the cores. In the case of the single Andean core that we discuss in §5.1,
for example, we define the control languages as consisting of all languages further than
1500 kilometers from the Andean core.2

After choosing these three sets, a naive Bayes classifier is trained on the proposed
core and the control class. These two classes serve to exemplify the opposite ends of
an axis along which the classifier will score languages. The classifier is then used to
score all languages, include those from the proposed core and the control class. The
highest-scoring languages constitute a refined hypothesis for a linguistic core, which
likely includes most or all of the proposed core, providing it was well chosen to begin
with. At the opposite end of the spectrum there will be languages with very low scores,
most of which will be non-core languages, if the proposed core was well chosen. Finally,
in some analyses such as ours, there will be languages with intermediate scores that are
geographically clustered near the proposed core. These constitute the periphery.

With the NBC analysis complete, the final step of the Core and Periphery technique
is to evaluate whether the languages with relatively high NBC scores were ever plau-
sibly involved in a donor-donee relationship with core languages, in light of available
geographical, ethnohistorical, and archeological data. If such a relationship is plausible,
we attribute the high NBC score to ‘linguistic admixture’, i.e. the diffusion of linguistic
features between one or more of the core languages and the high-scoring language,
with the result that it exhibits a mixture of core and non-core features. If the distri-
bution of high-scoring languages makes no sense geographically or otherwise, then
Core and Periphery essentially fails to support the proposed linguistic area. Note that
even when Core and Periphery is successful, the probabilistic nature of NBC, and the
limitations of using phonological inventories as evidence for contact, may yield ‘false
positives’, i.e. languages that exhibit high NBC scores despite there being no plausible
basis for contact between those languages and core languages. Such languages should
be discarded, leaving a phonological area that is defensible both quantitatively and
qualitatively.

A two-core analysis, in contrast, produces a four-way division of languages (Core 1,
Core 2, the control class, and the equivocal class). The naive Bayes classifier is trained on

1 As one reviewer suggested, even languages on another continent could serve as control languages.
2 The Core and Periphery results actually suggest that in most cases, the range of phonological influence of

the Andes into the surrounding lowlands does not exceed a few hundred kilometers, but by choosing so
distant a control class, we allow for the possibility of more distant influence.
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each core and the control set, and a three-way classification is then performed, yielding
three scores for each language, which indicate the similarity of every language to each
of the cores and to the control class. Those languages that obtain high scores for either
of the two cores are then evaluated for plausibly having been in contact with a core
language.

3. Dataset and Analytical Goals

3.1. SAPhon

The quantitative exploration of phonological areality presented in this paper is based on
the analysis of the phonological inventories found in the South American Phonological
Inventory Database, version 1.1.3 (SAPhon 1.1.3; Michael et al., 2013).3 In this section
we briefly describe the structure of the database and discuss particular decisions that
we made in populating the database and preparing it for quantitative analysis.

SAPhon 1.1.3 incorporates 359 phonological inventories that have been harvested
from published sources, or contributed by linguists currently working on the languages
in question. This represents over 95% coverage of South American languages for which
phonological descriptions are known to exist in one form or another.4 The vast majority
of inventories in the SAPhon database belong to living languages, but SAPhon also in-
cludes inventories from recently extinct languages, such as Chamicuro (Parker, 1991), as
well as inventories based on the careful interpretation and re-analysis of older resources,
as in the case of Cholón (Alexander-Bakkerus, 2005).

To facilitate quantitative analysis, the phonological inventory of each language is
coded in a comprehensive phonological feature matrix, with languages along the y-
axis and features along the x-axis,5 with a column for every phoneme and contrastive
supersegmental feature (e.g. nasal harmony) attested in a South American language.
Each phonological inventory is coded as a row of ones and zeros in the table, where
the presence of a given segment for a given language is coded as ‘1’ in the appropriate
column, and absence coded as ‘0’. Exhaustively coding the inventories in this fashion
relieves us of having to decide in advance which segments or contrasts are relevant to
the exploration of areality.6

We now turn to a number of methodological and analytical issues posed by the
nature of the data on which SAPhon is based. Since SAPhon draws data from a
considerable range of published and unpublished sources, issues of heterogeneity in
those sources pose challenges for development of the database, and for the analytical
purposes to which we put that data.

The first type of heterogeneity we must contend with is the existence of multiple,
sometimes incompatible, phonological descriptions for a given language. Since allow-
ing multiple inventories for a given language poses significant analytical difficulties, we
typically select one inventory from among the various proposed for a given language,
preferring those given in work that present considerable supporting data and analytical

3 Available online: http://linguistics.berkeley.edu/∼saphon
4 This estimate is based on Fabré’s (2005) extensive bibliography of publications on South American

languages, from which our list of languages is largely drawn.
5 In this article, feature always refers to a feature of a language as a whole (such as the presence or absence

of a particular phoneme in the phonological inventory) rather than to phonological features such as labial
or unrounded.

6 We thank Mark Donohue for sharing this very useful coding technique with us.

4



detail, and prepared by authors with the substantial linguistic training. We also typically
prefer inventories based on more recent work, on the grounds that recent work takes
into account both previous analyses and new data. To improve the quality of our
judgments in evaluating conflicting analyses we also consulted specialists in particular
languages, language families, and known linguistic areas in South America. In cases
where there is compelling evidence that the differences between inventories proposed
for a given language are due to dialectal differences, we include both dialects in the
database.

The second type of heterogeneity we contend with stems from the divergent ways
in which different linguists treat the same empirical phenomena. In particular, different
representational choices can lead to differences in the inventories given for different
languages that do not reflect significant empirical or analytical differences between the
inventories in question. To remove these spurious differences, we subject the coded
inventories to phonological regularization prior to quantitive analysis (while leaving
the original coding intact in SAPhon).

To understand the motivation for phonological regularization, and to demonstrate
how it is carried out, it is useful to consider some concrete examples. We first discuss the
treatment of non-high front vowels in Tupí-Guaraní (TG) languages. All TG languages
exhibit two contrastive front vowels, given in descriptions as /i/ and either /e/ or /E/
(and in one case, /I/). In some of the languages where the symbol chosen to represent
the front mid vowel phoneme is /e/, the description explictly indicates that this vowel
is phonetically realized as [E] (e.g. Kamaiurá; Seki, 2000), and in other TG languages the
symbol chosen for the mid front vowel phoneme is /E/ (e.g. Nhandeva; Costa, 2003).
In addition, there are several TG languages where the symbol used to represent the
non-high front vowel phoneme is /e/, but no information is provided as to its phonetic
realization. Crucially, no TG language exhibits two contrastive front mid vowels: we
never encounter a contrast between /e/ and /E/.

For purposes of the analysis presented in this paper, we treat all TG languages as
having the same two front vowels phonologically: a high front vowel /i/ and a mid
front vowel /e/. We implement this regularization by recoding the phonemes given as
/e/ or /E/ in these languages as {e} (leaving the phonemes in the underlying database
untouched). The result of this normalization is to recast the inventories of TG languages
as exhibiting no difference in their front vowels for the purposes of our quantitative
analysis. We extend our treatment of vowel systems of these types to all languages in
our dataset. We treat all languages that exhibit only /i, e/ or /i, E/ in their inventory
of front vowels as exhibiting /i, {e}/. Of course, in languages in which /e/ and /E/ do
contrast, as in the majority of Macro-Ge languages, no regularization of these segments
is carried out.

The preceding motivation for regularization stems from the fact that linguists vary
in their choices of symbol to represent a given phoneme, but there are also methodologi-
cal and typological motivations for regularization. First, given the phonetic similarity of
[e] and [E] it is likely that not all field linguists systematically distinguish the two phones
in languages in which they do not contrast. Moreover, one would expect to often find
non-contrastive variation between these two phones within such languages, based on a
variety of phonetic and sociolinguistic factors. This means that using both /e/ and /E/
to represent the single mid front vowel present in different languages suggests a greater
degree of phonetic precision than is probably warranted.

Second, it is clear that in cases like that of Kamaiurá, mentioned above, linguists
choose the phoneme label that represents not the precise phonetic value of it basic
allophone (i.e. [E]), but the typologically expected phoneme in that area of the phone-
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mic space (i.e. /e/), as delimited by the phonemes with which it contrasts. As such,
phoneme representations of this sort are not directly comparable to those which opt for
a representation that is more phonetically faithful to the basic allophone of the phoneme
(i.e. /E/). Regularization resolves the discrepancy between these two principles for
choosing phoneme symbols by converting all ‘phonetically faithful’ phoneme symbols
to ‘typologically unmarked’ ones.

A second phenomenon that illustrates a more analytically profound motivation for
regularization comes from the treatment of contrastive nasality in Southern American
languages, as exemplified by the treatment of surface nasal vowels in Tukanoan lan-
guages. Briefly, surface nasal vowels are accounted for in two ways in these languages:
as the surface realization of underlying nasal vowels, or as vowels that have undergone
nasalization due to a morpheme-level nasalization feature that spreads nasalization
onto the vowels in question (see, e.g. Gomez-Imbert, 1993 and Stenzel, 2004). The former
analysis tends to be common in earlier works on languages of this family, and the
morpheme-level nasal spreading analysis is typical of more recents works. In general,
these appear to be two different ways to analyze materially similar distributions of nasal
features, and we regularize the phonological systems in question by including the nasal
counterparts of all oral vowels in the phonological inventories of languages that have
been analyzed as exhibiting morpheme-level nasal spreading.

We list the regularization rules and discuss how they are applied to the SAPhon
dataset in §7.

3.2. Applying Core and Periphery to Andean languages

In this paper we illustrate the Core and Periphery technique by using it to explore the
Andean phonological area, and two phonological sub-areas within this larger area, the
Southern Andean phonological area, and North-Central phonological area. In doing
so we exemplify how the technique works when selecting cores of varying degrees of
initial insightfulness.

The choice of the Andean highlands as a candidate core is an obvious one for
areal specialists. Büttner (1983, p. 179), for example, observed that Southern Andean
languages exhibit similar phonological inventories, and observations by linguists like
Dixon (1999) regarding the phonological distinctiveness of the Andean and Amazonian
regions are generally deemed uncontroversial (even if detailed evidence for such claims
is not presented). Similarly, the Andes is generally recognized as a culture area which
has, at different points in time, been dominated by large empires or polities, including
Wari, Tiwanaku, and the Inkas (Steward and Faron, 1959, p. 5–16).

In our first Core and Periphery analysis, we operate on a proposed Andean core
that consists of the 23 languages located in the contiguous mountainous region of
western South America above 2,000 meters in elevation, from Patagonia in the south
to Ecuadorean Andes in the north. The 2,000 meter limit clearly separates Amazonian
groups whose territory extends into the Andean piedmont from Andean peoples, and
the northern limit of the Ecuadorean Andes corresponds to the extent of the Andean
culture area as defined by the northernmost limit of Quechuan expansion. In the control
set we include the 113 languages of the region beginning at 1500 km from the nearest
Andean language, extending to the furthest limits of the continent. The remaining 223
languages in the the 1,500 kilometer-wide strip between the core and control languages
make up the equivocal set of languages about which we posit nothing in advance.

Our second Core and Periphery analysis is motivated by the observation that al-
though all Andean languages share features that distinguish them from non-Andean
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languages, the Southern Andean languages exhibit distinctive features not found in
most Central or Northern Andean languages (e.g. a series of ejective consonants) while
the latter group of languages exhibits distinctive features not generally found in the
former group (e.g. retroflex affricates). These facts suggest that that it may be useful to
treat the Andean area as comprising two subcores: a Southern core and a North-Central
core. There are also sociohistorical facts that suggest that it may be useful to distinguish
two cores in this way, namely, the fact that the Southern core corresponds roughly to
extensions of the Tiwanaku empire (corresponding roughly to modern highland Bo-
livia) and that the North-Central core corresponds roughly to the extension of the Wari
horizon (Isbell, 2008). For the purposes of this analysis, we posit a Southern Andean
core of 10 Andean languages south of the line that separates languages with ejectives
from those without ejectives, with the remaining 19 Andean languages constituting the
North-Central core.

4. Exploring language contact with a naive Bayes classifier

4.1. Overview

A naive Bayes classifier is a probabilistic model that classifies objects into K classes.
Such a classifier is first trained on many examples, each labeled by a human expert
with the class to which it belongs. Thereafter, when presented with a novel object, the
classifier will report with what probability the object belongs to each of the K classes.7

A common application of this technology is spam filtering. An e-mail account may
receive dozens of unwanted messages every day, but a typical classifier is smart enough
to put almost all of them into a spam folder, saving the user the trouble of ever having to
look at them. In this application there are two classes: spam and non-spam. The classifier
is trained on messages that it knows to be spam (such as those the user manually
flags) and those it knows to be non-spam (such as those that the user does not flag
after reading). This continuously-trained classifier is applied to incoming messages, and
usually works very well.8

A naive Bayes classifier analyzes each object in terms of features that characterize
it. In the case of e-mail, the features are the words that a message contains. When an
incoming message is analyzed, each word will push the classification toward spam
or non-spam, depending on how strongly the word is associated with spam or non-
spam in the messages on which the classifier has been trained. A word such as Viagra
is a strong indicator of spam, whereas most low-frequency words (such as analysis or
linguistics) are weak indicators of non-spam. The classifier combines the evidence from
each word to reach a verdict about the message as a whole.

7 The origin of the naive Bayes classifier is obscure. It is a straightforward but non-trivial application of
Bayes Theorem, which dates from the 18th century. Widely-used texts such as Mitchell (1997), Manning
and Schütze (1999), Bishop (2007), and Jurafsky and Martin (2009) discuss it without commenting on its
origin. Gale et al. (1992), cited in Manning and Schütze (1999), applied a naive Bayes classifier to the
problem of word-sense disambiguation in natural language processing, without referring to it as such.
This paper in turn cited Mosteller and Wallace (1963), a famous paper that used a naive Bayes classifier
(also not referred to as such) to determine the authorship of twelve of the Federalist Papers. We suspect
that naive Bayes classifiers had been used in diverse settings before the name itself caught on.

8 The first academic papers to discuss Bayesian spam classifiers appeared in 1998 (Pantel and Lin, 1998;
Sahami et al., 1998) but it was an essay from 2002 titled A Plan for Spam that popularized the concept and
made specific proposals to lower the rate of false positives to the point where the technology became
usable (Graham, 2008).
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Adapting this technology to classifying languages is straightforward: we train a
classifier on training languages from K classes of interest, and use it to probabilistically
classify a test language. (If there are multiple test languages, the classifier is run once for
each test language.) The analyst provides a featural specification for each language, and
a class label for each training language. As explained in §3.1, the featural specification
is an encoding of the phonological inventory in which each feature is a phoneme or a
suprasegmental feature that is either present or absent in the language. During training,
the classifier calculates how strongly each phoneme is associated with each class. Then,
in order to classify a test language, the classifier combines the evidence from each
feature and assigns K probabilities to the test language — these are the probabilities
that the test language belongs to each of the K clusters.9

4.2. Two-way classification

A two-way classifier is a special case of a general K-way classifier that can be explained
in simpler terms, so it will be discussed first. Training a classifier with two classes entails
calculating a feature weight for each feature that expresses how strongly each feature is
associated with each class. The weight for feature l is

ul = log

(
N1l

N2l
÷ N1

N2

)
[provisional].

N1l is the number of training languages in class 1 that have feature l, and N1 is the total
number of training languages in class 1. N2l and N2 are analogous quantities for class
2. The first ratio N1l/N2l is a comparison of the counts of feature l in the two classes.
This is counterweighted by the second ratio N1/N2, which expresses the relative sizes
of the two classes. The logarithm has the effect of causing the weight to be zero when
the feature is neutral, positive when it is associated with class 1, and negative when
associated with class 2.

One problem with this formula is that when any of the counts are zero, the feature
weight ul ends up at either positive or negative infinity. To prevent this, we inflate the
counts by a small amount in order to regularize the result:

ul = log

(
α+N1l

α+N2l
÷ α+ β +N1

α+ β +N2

)
.

For many applications it suffices to set α = β = 1/2, but in our analyses we fit these
parameters to the data, as explained in §B.3.

9 When we were divising the Core and Periphery technique, we tried using other kinds of classifiers
besides NBC, such as support vector machines and logistic regression. The latter two are most often
presented as classifying objects into two classes, but multiclass versions exist. All three classifiers are
supervised learners, in that they classify based on examples provided by the analyst. In practice, NBC
worked better than the other two methods, perhaps because it is a generative model, whereas the other
two are discriminative models. Generative models tend to work better when the number of data points in
the training data is relatively small, and the dimensionality of the data is large (Ng and Jordan, 2001).

As for unsupervised analyses such as principal components analysis or multidimensional scaling,
these are certainly useful as exploratory data analyses, and they may even identify potentially interesting
linguistic areas. But since they are unsupervised, they cannot be directed by an analyst to examine an
areal hypothesis that the analyst is specifically interested in. We thus omit mention of these analyses in
discussing the Core and Periphery technique.
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Strictly speaking, the above expression gives the feature weight for the presence of
a feature. It is also necessary to calculate weights for the absence of a feature, via

vl = log

(
β +N1 −N1l

β +N2 −N2l
÷ α+ β +N1

α+ β +N2

)
.

The main difference is that counts for the presence of a feature N1l and N2l have been
replaced by counts for the absence of the feature N1 −N1l and N2 −N2l. Once feature
weights (for both present and absence features) have been calculated, the classifier is
ready to classify.

For the test language, the classifier produces a score

s =

L∑
l=1

{
ul if feature l is present in the test language,
vl if feature l is absent in the test language. (1)

This score is a summation over all features (numbered from 1 to L) of feature weights,
using ul if feature l is in the test language, or vl if feature l is not. The interpretation of
the score is similar to that of the weights. A score of zero means that the test language
is equally likely to belong to either class; a positive score means that it is more likely to
belong to class 1; and a negative score means that it is more likely to belong to class 2.

4.3. Underlying model and K-way classification

The previous section discussed naive Bayes classification from a procedural perspective.
Now we engage in a brief discussion of the model that underpins the procedures. The
model posits that our data, which comprise the training languages, the test language,
and the labels for the training languages, were generated via a set of random events,
which are as follows.10

r Randomly generate a feature frequency θkl for each feature l and each class
k. This is the probability that a language in class k will have feature l.
Feature frequencies are unobserved.r Assign each language, including the test language, to one of K classes
with probability 1/K.11 The assignments of the training languages are
observed. The assignment of the test language is unobserved.r For each language, endow it with feature l with probability θkl, where k is
the class of the language. Each feature is generated independently of the
others, conditional on k. The features that a language has are all observed.

10 When thinking about such models, W. C. finds it helpful to imagine a deity generating the data according
to the procedure given, with some of the deity’s choices hidden from view. What is not hidden comprises
the data. On the basis of this data, we infer some of the hidden things.

11 In a more sophisticated variant of this model, each language is assigned to class k with some probability
πk . The random variable πk is not observed, and must be inferred from the data. In two-way
classification, this adds a term such as log[N1/N2] to the score of the test language. When the number of
training languages is fixed (as in our analyses) this term moves all scores up or down by a fixed amount,
and does not alter any conclusions.
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With this as the premise, the classifier seeks to infer the class of the test language.
It calculates, for each class k, the probability f(k) that the test language would be
generated by the feature frequencies θk1, . . . , θkL of class k. From this it infers that the
test language belongs to class k with probability

pk =
f(k)

f(1) + f(2) + · · ·+ f(K)
. (2)

If the feature frequencies were known, the formula for f(k) would be straightforward:

f(k) =

L∏
l=1

{
θkl if feature l is in the test language,

1− θkl if feature l is not in the test language. [provisional]

The classifier is essentially calculating the likelihood of each choice f(k) by taking the
product of the probability of generating each feature value (present or absent) in the
test language. We do not know what these feature frequencies are, but we can obtain
some insight (albeit not exactly the right answer) by estimating the feature frequencies
directly from the data via the formula θkl = Nkl/Nk, where Nkl is the number of times
feature l exists among training languages of class k, and Nk is the total number of
training languages of class k. We get:

f(k) =

L∏
l=1

{
Nkl

Nk
if feature l is in the test language,

Nk−Nkl

Nk
if feature l is not in the test language.

[provisional]

The correct equation, obtained by integrating over all possible values for all feature
frequencies, is similar. If we posit a beta distribution prior for each feature frequency
θkl ∼ Beta(α, β) we get the following expression for the likelihood:

f(k) =

L∏
l=1

{
α+Nkl

α+β+Nk
if feature l is in the test language,

β+Nk−Nkl

α+β+Nk
if feature l is not in the test language.

(3)

This, along with Eq. 2, yields the probabilities p1, . . . , pK for K-way classification.
Sections B.1 and B.2 restate the contents of this section more formally, and expand on it.

4.4. Probabilistic interpretation of NBC weights and scores

Eq. 1 in §4.2 describes how to compute an NBC score, which indicates how a test
language is classified when K = 2. However, Eq. 2 in §4.3 derives a different indicator
of classification: pk, the probability with which the test language belongs to class k. How
do these two kinds of indicators relate to each other?

It turns out that when K = 2, there is a straightforward mapping between the score
s and p1 (the probability that a test language belongs in class 1). They are related by the
function S(o) = 1/(1 + e−o). This function is plotted here.
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In general, this sigmoid function translates from values that have a range of [−∞,∞], to
a probability, which has a range of [0, 1]. The argument o is a log-odds, so-called because
it is the log of an odds ratio.

When K = 2, s is the log-odds that corresponds to the probability p1, i.e. S(s) =
p1. Conversely we can apply the inverse function S−1(p) = log p/(1− p) to p1 to get
s. According to Eq. 2, the probability that the test language belongs to class 1 has the
form p1 = f(1)/[f(1) + f(2)]. Converting this probability to a log-odds yields a score
s = log f(1)/f(2), which expands to

s =

L∑
l=1

log

{
α+N1l

α+N2l
÷ 1+α+β+N1

1+α+β+N2
if feature l is in the test language,

β+N1−N1l

β+N2−N2l
÷ 1+α+β+N1

1+α+β+N2
if feature l is not in the test language.

We see here that each feature value (present or absent) contributes in an additive way
to the score. Comparing this to Eq. 1 shows how the feature weights were derived.

When K > 2, the structure of the computation in §4.3 does not result in additive
feature weights for each feature, and since we do not compute feature weights before
computing p1, . . . , pK for the test language, there is no distinct training stage. Also,
since the classification results in more than two probabilities, it is no longer possible
to indicate the classification of the test language with a single score. We can, however,
convert each pk into a log-odds and indicate the classification with K scores. When
reporting the results of 3-way classification in §C.2, this is what we do.

4.5. Feature non-independence and the interpretation of results

The naive Bayes classifier’s name derives from the naive assumption that the features
in a language are generated independently, given the class of the language. In reality,
however, the existence of one phoneme in an inventory is often strongly correlated with
the existence of other phonemes in that inventory. For example, a language with /e/
often tends to have /o/, and vice-versa. Similarly, a language with an ejective stop at
one place of articulation also tends to ones at other places of articulation. In this respect,
there is a sense in which having multiple mid-vowels or having multiple ejective stops is
a single ‘fact’ about a language, but a naive Bayes classifier will treat each fact of this sort
as a set of multiple, independent facts. That is, the presence of mid-vowels is treated as
two facts: the presence of /e/ and the presence of /o/. Similarly, the presence of ejective
stops is treated as multiple facts about the presence of ejective stops at each place of
articulation. This kind of multiple counting results in inflated scores, producing an effect
of exaggerated certainty in classifying a language. All languages will suffer from this ef-
fect to some extent when undergoing classification, since feature non-independence (or,
more colloquially, feature clumping) occurs frequently. Vowels of a given height, nasal
vowels, long vowels, voiced stops, aspirated stops, ejective stops, etc.: each of these
classes of sounds tend to be a clump. The presence or absence, in a test language, of any
of these clumps exaggerates classification probabilities, rendering a literal probabilistic
interpretation problematic. In our analyses, we sidestep this problem by disregarding
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the literal interpretation of the classification probabilities and reinterpreting them as
measures of linguistic admixture. This interpretive leap calls for a careful explanation
of admixture and how it is that admixture is not directly modeled by a naive Bayes
classifier, to which we now turn.

By admixture, we refer to the phenomenon where the features of a language derive
from two or more sources. This is analogous on some level to genetic admixture, where
a person inherits certain genes from one parent and certain genes from the other; or,
more abstractly, where a person inherits features from each of the K distinct ancestral
populations in his or her ancestry. If we were to posit admixture for circum-Andean
languages, one way to do this would be to posit two sources, one for the Andean core
and one for the control class, described in §2. Each source is a hypothetical ancestral
population in which there is a certain amount of linguistic diversity. A source does
not have to be an actual set of precursor languages, though this is a good way to
conceptualize it.12 Each modern language descends from one or more sources.

A pure language derives its features from just one source. If, for example, all of
the languages in the ancestral population have /p/, then a descendant of that source
will also have /p/. If 60% of the languages in the ancestral population have /x/,
then a descendant of that source will have /x/ with 60% probability. In general, the
probability that a descendant has a feature matches the probability that a randomly-
chosen constituent of the ancestral population has it.13 Since there is some diversity in
any ancestral population, one pure descendant does not have to be identical to another,
but it will in almost all cases be classified as descending from that population with little
ambiguity, when all features are taken into account.

A mixed language derives its features from more than once source. If, for example,
two ancestral populations are involved, then a certain fraction of the mixed language’s
features may derive from one, while the rest derive from the other.14 It is often much
more reasonable to posit that a language is mixed rather than pure. For instance, if
a language has many distinctively Andean features and also many distinctively non-
Andean features, then it is, on an intuitive level, best to posit admixture. (Just as, if a
dog has many poodle features and many labrador features, one surmises that it is a
mixed breed.) When a language is mixed, it is often possible to infer the extent to which
it drew from each ancestral population. For circum-Andean languages such a statistic
would indicate how core-like or control-like a language is.

However, as previously mentioned, the naive Bayes classifier is not a model of
admixture. Rather unrealistically, every test language is assumed to be a pure language.
Classification involves determining not to what extent the language descended from
each ancestral population, but with what probability. Our interpretive leap is to use the
latter as an indicator of the former. Unfortunately, the coarseness of this method of
interpretation does not allow us to infer the absolute proportions of admixture in a
language. If the model reports that a language belongs to class k with probability 0.7,
that is by no means the same as indicating that 70% of the phonemes of the language
are from the source identified with class k. We can only conclude that if pk is higher
for language X than for language Y , then X probably derives more of its phonemes

12 Formally, a source is represented by a bank of feature frequencies, one for each feature. Source k is
represented by feature frequencies (θk1, . . . , θkL), where θkl is the frequency of feature l among the
languages of ancestral population k. This is formally identical to how a class is modeled in NBC; see first
bullet in §4.3.

13 This is formally identical to how languages are generated in NBC; see third bullet in §4.3.
14 For an example of a model that implements admixture in exactly this way, see Pritchard et al (2000).
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from the source corresponding to class k than Y . This relativistic interpretive strategy,
whatever its drawbacks, has the benefit that it allows us to work around the fact that
feature clumping exaggerates classification probabilities and deprives them of their
usual interpretation.

4.6. Details in applying the model
4.6.1. Feature culling. It was our assumption previously that feature clumps tend to be
of limited size, so that there is a limit to how much a single clump can affect classification
probabilities. In general this seems to be true, but there is a notable exception: rare fea-
tures. Rare features tend to occur together in very large clumps. For instance, there are
112 features in our dataset that occur in exactly one language, but twelve of them occur
in the same language, Paez, causing the classification of Paez to be greatly exaggerated.
To prevent outcomes of this sort, we have discarded all features that occur five or fewer
times in the training languages from our analyses. This amounted to discarding 225 of
the 304 features in the dataset, leaving 79.

To be consistent with culling rare features, we have also culled near-universal
features on the theory that when absences are rare, the absences can clump together
just like rare features. We have discarded any feature that is present in all but five or
fewer training languages. This resulted in discarding /t/, /k/, /i/, and /a/ from our
analyses, leaving 75 features.

4.6.2. Measuring admixture in a training language. When using a naive Bayes classifier
to measure admixture, we should not exempt the training languages from scrutiny.
However, it would prejudice the model for a test language to be a training language
too. When we wish to apply the classifier to a training language in class k, we remove
it from the set of training languages first. This lowers the count Nk in Eq. 3 by one,
and lowers Nkl by one for each feature l present in the language. After this adjustment,
classification proceeds as before.

4.6.3. Feature deltas. In a two-way classifier, the feature weights ul and vl give measures
of the association between class 1 and, respectively, the presence or the absence of
feature l. Having two weights for each feature is cumbersome if all we wish to know
is the degree of association between a feature and a class. Using the formulas in §4.2 we
define a measure called delta:

δl = ul − vl = log

(
α+N1l

β +N1 −N1l

)
− log

(
α+N2l

β +N2 −N2l

)
.

This measure is zero if the feature is neutral, positive if it is associated with class 1, and
negative if it is associated with class 2. We can generalize delta to K-way classification
by defining a set of K deltas for each feature:

δkl = log

(
hkl

1− hkl

)
− log

( ∑
j 6=k hjl∑

j 6=k 1− hjl

)
,

where hkl = (α+Nkl)/(α+ β +Nk). The summations are from 1 toK, excluding k. The
element δkl is zero if feature l is neutral with respect to class k, and positive or negative
if feature l is positively or negatively associated with class k, respectively. A feature that
is neutral with respect to all K classes will have zeros for all K deltas.
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Figure 1
Feature deltas for single core Andean analysis

5. Results

5.1. Single Andean Core

The feature deltas (henceforth ‘deltas’) resulting from the NBC analysis of the Andean
core are given in Figure 1. Positive deltas contribute to the classification of the languages
that bear them as Andean, while negative deltas contribute to the classification of the
languages that bear them as non-Andean. The presence of phonemes like /q/ and
/L/ in the inventory of a given language thus strongly contribute its classification as
Andean, while the presence of /1/ or /ã/ strongly contribute to its classification as non-
Andean.

The deltas given in Figure 1 yield the distinctive phonological profile for the Andean
core given in Tables 1-2. In these tables we (somewhat arbitrarily) select a delta of ±2
(p = 0.88) or as the cutoff for segments whose presence or absence is strongly charac-
teristic of the Andean core, and deltas between 1 and 2 (0.73 < p < 0.88) and −1 and
−2 as the range for segments whose presence or absence, respectively, are moderately
characteristic of the Andean core. Strongly characteristic segments are printed in bold,
while moderately characteristic ones are printed in normal weight.

The distinctive phonological profile of the Andean core languages, i.e. the set of
segments that distinguish the Andean core languages from control languages in terms
of either their presence and their absence, is large. The size of this distinctive phono-
logical profile strongly suggests that the chosen core forms part of a phonological area
distinguishable from the set of control languages.

The distinctive Andean consonantal profile can be positively characterized as ex-
hibiting contrastive aspirated and ejective stops (a contrast found also in the postalve-
olar affricate), as well as a comparatively large number of affricates, fricatives, and
liquids. Less common places of articulation that contribute positively to the profile
include palatal (nasal and liquid) and uvular (stop and fricative). The consonantal pro-
file can be negatively characterized as excluding the voiced alveolar stop and affricate,
the labialized velar voiceless stop and nasal, voiced bilabial and voiceless labiodental
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ph p’ th t’ kh k’ q qh q’
tS tSh tS’ úù

s S x X
ñ

l R ń

i: u u:

a:

Table 1
Distinctive phonemes of the Andean core languages (positive feature deltas)

d kw P
dZ

B f h
Nw

ĩ ĩ: 1 1: 1̃ 1̃: ũ ũ: tone
e ẽ ẽ: E Ẽ @ @: @̃ @̃: o õ õ: O Õ 7

ã

Table 2
Distinctive absences in the Andean core languages (negative feature deltas)

fricatives, and the glottal stop and fricative. The distinctive Andean vocalic profile is
positively characterized by /u/ and /i:, u:, a:/, but negatively by the absence of mid
vowels, non-low central vowels, nasal vowels, and long versions of many of these
vowels.

The NBC score of each language is given in Appendix C.1 and is plotted on a map
in Figure 2, where the orange line is a smoothed version of the 2000 meter elevation
contour. Languages with NBC scores near zero, and hence, difficult to classify as either
Andean or non-Andean, appear in light gray. Higher NBC scores for a language corre-
spond to greater red saturation, while the lower (i.e. negative) NBC scores correspond
to greater blue saturation.

Inspection of Figure 2 reveals that a penumbra of languages with high NBC scores
surrounds the posited Andean core, which is dense with languages with very high NBC
scores. Following our discussion of the interpretation of NBC scores in §4.5, the high
NBC scores of many of the languages in the circum-Andean peripheral region indicate
that their phonological inventories much more closely resemble those of core Andean
languages than those of the control languages, suggesting phonological admixture with
Andean languages.

Inspection of Figure 2 also reveals that the NBC score tapers gradually with distance
from the Andean core. The periphery of this phonological area is thus diffuse, and lacks
clear boundary separating peripheral languages that are unambiguously members of
the phonological area, such as Yanesha’ [ame], from those that are clearly not, such as
Aguaruna [agr]. If we consider any language with an NBC score greater than zero to be a
candidate for membership in the area, and (somewhat arbitrarily) any language with an
NBC score in the 95th percentile or greater to be a strong candidate for membership in
the area, we obtain a partitioning of the periphery into ‘strong’ and ‘weak’ members
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Andean core
Control class
Test language only

Figure 2
Languages of South America (two-way Andean core NBC scores)

of the linguistic area. These peripheral members of the Andean core mostly cluster
geographically, as indicated below, and displayed in the more detailed maps in Figures
3-5.

ECUADOREAN FOOTHILLS
Strong: Cha’palaa [cbi] (Barbacoan)
Weak: Kamsá [kbh] (isolate)

HUALLAGA VALLEY
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Strong: Chamicuro [ccc] (Arawak), Cholón [cht] (isolate)
Weak: Shiwilu [jeb] (Cahuapanan), Candoshi [cbu] (isolate)

SOUTHERN PERUVIAN FOOTHILLS
Strong: Yanesha’ [ame] (Arawak)
Weak: Ashéninka (Apurucayali [cpc] and Pichis [cpu] dialects)
(Arawak)

CHACO
Strong: Vilela [vil] (isolate), Maká [mca], Chulupí [cag] (both
Matacoan)
Weak: Wichí [mtp] (Matacoan), Toba Takshek [tob_tks], Toba
Lañagashik [tob_lng], Mocoví [moc] (both Guaicuruan)

PATAGONIA
Strong: Ona [ona], Haush [ona_mtr], Puelche [pue], Tehuelche teh (
Weak: Northern Alacalufan [alc_nth], Central Alacalufan [alc_cnt],
and Southern Alacalufan [alc_sth] (Alacalufan)

MISCELLANEOUS
Weak: Arabela (Zaparoan), Leko [lec] (isolate)

LOWLAND QUECHUAN LANGUAGES
Strong: Ferreñafe Quechua [quf], Inga (Jungle dialect) [inj], Napo
Quichua [qvo], San Martín Quechua [qvs], Santiago del Estero
Quechua [qus]

In several of these regions, such as the Ecuadorean foothills, the Huallaga River
valley region, and the Southern Peruvian Foothills regions, significant contact between
speakers of Andean languages and the relevant non-Andean languages is either known
to have taken place (see, e.g. Adelaar and Muysken, 2004, p. 411–413, Payne, 1990,
p. 1–10), or such contact is generally plausible, due to geographical proximity and the
ubiquity of trade between adjacent highland and lowland regions.

Somewhat more surprising is the fact that Patagonia and the Chaco constitute an
essentially contiguous phonological area with the southern Andes. Although there is ev-
idence of trade between the Tiwanaku polity and the inhabitants of the Chaco between
approximately 100 AD and 1100 AD (Angelo and Capriles, 2000; Lecoq, 1991; Torres and
Repke, 2006), it is unclear whether those relations would have been sufficiently intense
to produce the kind of convergence we see between the southern Andean languages.
Nevertheless, one Chacoan linguistic isolate (Vilela) and several Chacoan languages of
the Matacoan and Guaicuruan families exhibit features strongly statistically associated
with the Andean highlands, including ejectives, uvular consonants, and the palatal
lateral. Evidence of contact between Patagonian and southern Andean peoples is even
sparser, but the former languages likewise exhibit features characteristic of the Andean
core languages. It should be noted that in Pre-Colombian times, the territory occupied
by speakers of Patagonian languages was contiguous with that occupied by Chacoan
peoples (Viegas, 2005, p. 30), raising the possibility that the similarity between Andean
and Patagonian languages arose not from direct contact between the languages of these
two regions, but was mediated by Chacoan languages.

Admixture between circum-Andean languages and more northern languages of
the Andean core appear to involve relatively local and recent convergence of these
peripheral languages to Andean core ones, but the phonological convergence evident
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Figure 3
Languages of North Andes and Circum-Andean regions (two-way NBC scores)

among Chacoan, Patagonian, and southern Andean languages does not exhibit clear
directionality. The circumstances that led to this broader areal convergence are less clear,
suggesting that much older, possibly multilateral, processes of phonological borrowing
are responsible for the large scale phonological areality we see in the South American
Cone.

In addition to the languages enumerated above, which comprise an essentially
contiguous region with the Andean highlands, we find three other languages with
positive NBC scores whose participation in the Andean and circum-Andean phono-
logical area is dubious. These languages, listed below as OUTLIERS, obtain their high
NBC scores due, in large part, to having aspirated stops and/or a palatal lateral in their
phonological inventories. Given the probabilistic nature of NBC results, and the great
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Figure 4
Languages of Central Andes and Circum-Andean regions (two-way NBC scores)

distance of these languages from the Andean core, which renders historical contact with
the Andean core languages extremely unlikely, we conclude that these languages simply
bear a chance resemblance to the languages of the Andean core.

OUTLIERS:
Strong: Yawalapití [yaw] (Arawak)
Weak: Yucuna [ycn] (Arawak), Yaathe [fun] (Macro-Ge)

5.2. Southern and North-Central Cores

Although there are sound reasons for positing a single Andean core, there are also
linguistic and socio-historical reasons to suspect that the Andean highlands exhibit
linguistically-distinguishable sub-areas. For example, simple inspection of Andean
phonological inventories reveals that southern Andean languages exhibit a three way
aspirated/ejective/plain stop contrast and uvular consonants, whereas these features
are rare or entirely absent in central or northern Andean languages. The social histories
of the two regions are also quite different, with the southern Andes historically domi-
nated first by the Tiwanaku polity and then by Aymaran peoples, who only partially
penetrated into the central Andes (Adelaar, 2012, p. 578). The central and northern
Andes, in contrast, were dominated first by the Wari horizon and later by Quechuan
peoples, who penetrated into the southern Andean region only shortly before the arrival
of Europeans.
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Figure 5
Languages of Patagonia (two-way NBC scores)

These observations motivate a dual core analysis that distinguishes Southern
and North-Central cores, where the division is defined by a line that groups Jaqaru
and Cuzco-Collao Quechua with all Andean languages to their south, and Ayacucho
Quechua with all Andean languages to its north.15 The deltas for the Southern core are
given in Figure 6, and its distinctive phonological profile is given in Tables 3-4. The

15 This line was chosen to group together the Andean languages with a three-way contrast between plain,
aspirated, and ejective stops.
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Figure 6
Southern Andean core feature deltas

ph p’ th t’ kh k’ q qh q’
tSh tS’

s x X
l ì ń

ñ

i: u:
e: o:

a:
Table 3
Distinctive phonemes of the Southern Andean core languages (positive feature deltas)

d g P
dZ úù

F B f z S
Nw

w

ĩ ĩ: 1 1: 1̃ 1̃: ũ ũ: tone
e: ẽ ẽ: E Ẽ @ @: @̃ @̃: õ õ: O Õ 7

ã ã:

Table 4
Distinctive absences in the Southern Andean core languages (negative feature deltas)

deltas for the North-Central core are given in Figure 7, and its distinctive phonological
profile is given in Tables 5-6.

The deltas and distinctive profiles for the two cores exhibit significant differences,
while sharing some charactersitics that distinguish them both from languages outside
either cores. Consonants that positively characterize the distinctive phonological pro-

21



Fe
atu

re
 d

elt
as

-6

-4

-2

0

2

4

pʼ

pʰ

p b

tʼ

tʰ

ts
d

ʈ    ʂ

tʃ    ʼ
tʃʰ

tʃ

dʒ

kʼ

kʰ

kʷ

ɡ

qʼ
qʰ

q

ʔ

m n

ɲ

ŋ

ŋʷ

ɸ

β f

s z

ɬ

ʂ

ʃ

x

ɣ

χ h

w

j
ɾ

l

ʎ

i ̃

iː

i ː ̃

e

e ̃ eː

e ̃ː
ɛ

ɛ̃

a ̃

aː

a ̃ː
ɔ

ɔ̃

o

o ̃ oː

o ̃ː

u

u ̃

uː

u ̃ː

ɨ
ɨ ̃

ɨː
ɨ ː ̃

ə
ə̃

əː ə̃ː ɤ tone

Figure 7
North-Central Andean core feature deltas

g
ts tS úù
s z S

l ń
ñ

i: u:

a:

Table 5
Distinctive phonemes of the North-Central Andean core languages (positive feature deltas)

ph p’ th t’ kh k’ kw q qh q’ P
tSh tS’

B f G
ì

Nw

ĩ ĩ: 1 1: 1̃ 1̃: ũ ũ:
e e: ẽ ẽ: E Ẽ @ @: @̃ @̃: o o: õ õ: O Õ 7

ã ã:

Table 6
Distinctive absences in the North-Central Andean core languages (negative feature deltas)

files of both Andean cores include /s l ń ñ/, and those that negatively characterize both
cores include /B f Nw/. Vowels that positively characterize both cores include /i: u: a:/,
while those that negatively characterize them include the absence of mid vowels, non-
low central vowels, and nasal vowels. Both cores also lack tone.
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Other features yield large positive deltas for one core but negative ones for the other,
serving to distinguish the cores not only from control languages, but from each other.
Ejective and aspirated consonants yield positive deltas for the Southern Andean core, as
do uvular stops and the lateral fricative /ì/, but negative deltas for the North-Central
Andean core, whereas the converse holds for /tù g z S/.

Yet other features yield large positive or negative deltas for one core, but do not
yield a large deltas for the other. For the Southern core these include /x X/ and the
absence of /d F w 7/. In contrast /ts/ is positively associated with the North-Central
core profile and /G/ negatively with it, but neither are salient for the Southern core.
Turning to the vowels, both cores are negatively associated with central vowels, but
the North-Central core exhibits a stronger negative association with short mid-vowels,
as /e o/ are not significantly negatively associated with the languages of the Southern
core.

The three-way NBC scores are plotted on a map in Figure 8. Whereas the two-way,
single core results provide a one-dimensional measure of how core-like or control-like
a given language is, the three-way, dual core results indicate to what degree a given
language resembles the languages of either of the two cores, as well as the non-core
languages. This we interpret as different degrees of admixture between the Northern-
Central core, the Southern core, and the control class. The amount of yellow, red,
and blue in the color of each dot encodes the proportion of those three components,
respectively. In point of fact, there are no instances of significant admixture between
just the two Andean cores, and all cases of significant admixture involve sizeable non-
core components.

The qualitatively most significant result of the dual core analysis is that the majority
of the languages of the Andean periphery identified in the single core analysis do in fact
align with one of the two sub-cores, and do so in a geographically plausible manner.
Languages which exhibit high Southern Core NBC scores are generally closer to the
Southern Core than the North-Central Core, and conversely for languages with high
North-Central NBC scores. The fact that Andean-like languages in the peripheral region
pattern with the nearest core, rather than being randomly associated with either sub-
core, indicates that convergence between circum-Andean languages and Andean lan-
guages is a relatively local effect attributable to language contact between the Andean
languages of each sub-core and their circum-Andean neighbors.

The principal ways in which the results of the dual core analyses differ from the
results of the corresponding single core analysis are to: 1) include more geographically
proximal languages of this peripheral region in the phonological areas associated with
the Andes; and 2) increase how strongly these peripheral languages pattern with the
core languages, as listed below and displayed in Figure 9.16 Kamsá [kbh], Shiwilu [jeb],
Candoshi [cbu], for example, have gone from being weak members of the area to being
strong members, and Panobo [pno] has gone from not being even a weak member of
the area to being a strong member. Likewise, Andoa [anb], Sápara [zro], and Muniche
[myr] went from being non-members to being weak members.

Languages of the North-Central Andean Periphery:

ECUADOREAN FOOTHILLS
Strong: Kamsá [kbh], Cha’palaa [cbi]

16 That is, the NBC scores reflecting membership in the relevant cores increase for these languages in going
from a single core to a two core analysis.
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Figure 8
Languages of South America (three-way NBC scores)

Weak: Andoa [anb], Sápara [zro]

HUALLAGA VALLEY
Strong: Shiwilu [jeb], Cholón [cht], Candoshi [cbu]
Weak: Muniche [myr]

SOUTHERN PERUVIAN FOOTHILLS
Strong: Yanesha’ [ame], Panobo [pno]
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Some languages, however, have ended up being excluded from membership in the
North-Central area as a result of the dual core analysis, including Chamicuro [ccc],
which was formerly a strong member of the (single core) Andean area, and Ashéninka
(Apurucayali [cpc] and Pichis [cpu] dialects) and Arabela [arl], which were formerly
weak members of the area. In the case of the Ashéninka varieties, they appear in the
region of the tri-polar plot that suggests admixture of non-core features with both
Southern and North-Central features, a result that is consistent with their location near
the boundary of the Southern and North-Central cores. Chamicuro, in turn, just barely
misses being a weak member of the North-Central area; although it exhibits strongly
positive North-Central features like the retroflex affricate, and less strong ones, like
the palatal lateral, it also exhibits mid-vowels and glottal stop, which are strongly
negatively weighted for this core.

The languages in the periphery that pattern with the Southern sub-core are given
below; plots of the languages of Patagonia and the Southern Andes and adjacent regions
are given in Figures 10 & 11.

Languages of the Southern Andean Periphery:

CHACO
Strong: Maka [mca], Vilela [vil], Wichí (Mission de la Paz dialect)
[mtp]
Weak (non-core admixture): Chulupí [cag]

PATAGONIA
Strong: Northern Alacalufan [alc_nth], Central Alacalufan
[alc_cen], and Southern Alacalufan [alc_sth], Ona [ona], Haush
[ona_mtr], Tehuelche [teh]

As in the case of the North-Central core, several languages have gone from being
weak members of the single Andean core to being strong members of the Southern sub-
core, including Wichí [mtp] and the Alacalufan languages [alc_nth, alc_cen, alc_sth].
Chulupí [cag] has experienced the opposite fate, and Puelche [pue] has gone from being
a strong member of the area to being excluded, while Leko [lec], Toba Takshek [tob_tks],
Toba Lañagashik [tob_lng], and Mocoví [moc] have gone from being weak members
to being excluded. All of the languages excluded under a strict interpretation of NBC
scores do, however, occupy regions near the zero log-odds line, a point we return to in
the discussion in §6.

Convergence of Quechuan languages to the non-Quechuan languages of the South-
ern core is also suggested by the very high Southern Andean NBC scores obtained
for Bolivian Quechua [qul_quh] and Cuzco-Collao Quechua [quz]. Other Quechuan
languages have negative NBC scores for this core, indicating that Bolivian and Cuzco-
Collao Quechua have been so significantly affected by contact with non-Quechuan
Southern core languages that their phonological inventories pattern with those of these
latter languages, rather than the Quechuan languages to which they are genetically
related. Santiago del Estero Quechua is the next more non-North-Central-like Quechuan
language, presumably due to the fact that its speakers migrated to the Argentinean pam-
pas during the latest stages of the expansion of the Inka empire (Adelaar and Muysken,
2004). At the same time, Jaqarú [jqr], a language belonging to the Aymaran language
family, although still solidly patterning with Southern core languages, more closely
resembles North-Central core languages than any of the Aymaran languages to which
it is genetically related. Since Jaqarú is far to the north of the other Aymaran languages,
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Figure 9
Languages of the Northern Andes and Circum-Andean regions (three-way NBC scores)

and adjacent to Quechan languages of the North-Central core, its greater similarity to
these languages reflects a history of contact with these Quechuan languages.

6. Discussion

Having demonstrated how Core and Periphery operates in exploring a particular set of
hypotheses about linguistic areality, it is important to clarify a number of properties of
this method. First, Core and Periphery is not a method which allows one to simply feed
in data to an algorithm without any knowledge of the relevant languages or regions.
Core and Periphery capitalizes on specialists’ linguistic and non-linguistic knowledge
both to generate fruitful initial hypotheses (i.e. the core and control language sets) and to
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Figure 10
Languages of the Central Andes and Circum-Andean regions (three-way NBC scores)

interpret the results, by evaluating the plausibility of language contact between core and
peripheral languages with high NBC scores, and by filtering out languages whose high
NBC scores can be attributed to genetic relatedness to core languages. What Core and
Periphery provides is an intuitively straightforward means to explore large datasets for
evidence of areality, by identifying features that distinctively characterize given groups
of languages, and by providing a quantitatively explicit measure of similarity between
a language and selected sets of languages.

It is important to note that despite the methodological priority of the proposed
cores (i.e. that they are selected first), Core and Periphery makes no claims about the
directionality of borrowing between core and periphery. There is no reason that, in
principle, peripheral languages cannot be the original historical source of the segments
that characterize a given phonological area. In these respects, then, Core and Periphery
is a somewhat blunt tool: it is useful for identifying areality characterized by broad
similarity among phonological inventories, but does not indicate the sources of the
segments borrowed in the development of the phonological area.

Another crucial characteristic of Core and Periphery is that the NBC scores it
generates are gradient, rather than categorial. On the one hand, this characteristic
is a strength of the technique, since this feature makes the technique well-suited to
analyzing areas with diffuse peripheries (see below). On the other hand, the gradient
nature of NBC scores introduces a degree of arbitrariness if we seek to choose an NBC
score to serve as a cutoff for identifying a languages as either core-like or control-like
for the purposes of evaluating areality. To see the somewhat arbitrary nature of the
cutoff, consider the NBC score cutoff of zero that we chose in this paper to distinguish
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Figure 11
Languages of Patagonia (three-way NBC scores)

core-like from control-like languages. This cutoff is actually somewhat conservative, as
can be appreciated by considering languages that exhibit small negative NBC scores.
These turn out to be predominantly located close to the edge of the Andean core (as
defined by the 2000m contour line), an unexpected result if all languages with negative
NBC scores were indeed wholly unaffected by contact with the relevant core languages.
The significant clustering of circum-Andean languages in the region of small negative
NBC scores would be explained, however, if these language were sufficiently affected
by contact with Andean languages to raise their NBC scores from their ‘pre-contact’
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scores, but not quite enough to give them positive NBC scores.17 In short, contact with
core Andean languages raises the NBC scores of the non-core languages in the circum-
Andean periphery, but in some cases, not sufficiently for them to pass the zero NBC
cutoff. The zero NBC cutoff is thus a relatively stringent criterion, in that it effectively
excludes languages from the Andean core that were plausibly affected by contact with
languages of the Andean core.

The issue of diffuseness of the periphery just raised suggests that it would be useful
to consider the strengths and weaknesses of the Core and Periphery technique in terms
of the areas it is well suited to studying. In qualitative terms, there are three important
dimensions along which linguistic areas may vary: distinctiveness, core-homogeneity,
and diffuseness. An area exhibits distinctiveness if some of its features occur at sig-
nificantly higher or lower frequencies than the larger region of which it is a part.
Distinctiveness is sometimes held to be definitional of a linguistic area (Aikhenvald,
2006), and while distinctiveness does make an area conspicuous, it is clear that pairwise
or multilateral borrowing of features may result in an area that does not stand out as
having distinctive feature values (Thomason, 2000). An area exhibits core-homogeneity
if it is possible to identify a relatively contiguous set of languages within the area that are
all very similar in the linguistic features being examined, either due to common descent
or to long-term multilateral contact that has led to convergence to a shared linguistic
profile. An area exhibits diffuseness if the area has a fuzzy boundary, i.e. a sizeble zone
surrounding the core over which the concentration of core features gradually tapers off.

In light of these parameters, we can first observe that since the NBC scores that the
Core and Periphery technique generates are continuous, it is well suited for the study of
linguistic areas with diffuse boundaries. However, it should be noted that non-diffuse
boundaries pose no problems for the method, and that such areas are amenable to being
characterized by NBC score cutoffs that arises naturally from the data, rather than being
completely arbitrary.

Next, Core and Periphery is significantly affected by the degree of homogeneity
of a posited core. An important lesson from comparing the single core results and the
dual core results is that combining two relatively homogeneous cores into a single less
homogeneous core can reduce the efficacy of the NBC in identifying what are probably
legitimate members of linguistic areas. In the single core analysis, we found that ejective
and aspirated consonants had positive deltas; and that short mid vowels, the retroflex
affricate, and the post-alveolar fricative had negative deltas. This means that the profile
of the unified core resembled that of the Southern core more than the Northern-Central
core. This explains the exclusion from the Andean periphery of some languages in
the foothills and lowland regions proximal to the northern and central Andes, since
languages in this region converged not to the profile of the unified core, but to that of
the Northern-Central core, where ejective consonants, aspirated consonants, and mid
vowels are uncommon, but the retroflex affricate and the post-alveolar fricative are
common.

Finally, it is clear that Core and Periphery will only serve to identify distinctive areas,
since in order for NBC to be able to classify languages as core-like or control-like, core
and control languages have to be sufficiently different. However, as Chang & Michael
(this issue) show with a different technique, there do in fact exist ‘mosaic areas’ in which

17 It would be useful for purposes of identifying the effects of contact in instances like this to have a
measure of the degree to which a language diverges from related languages in the direction of
neighboring languages to which it is not genetically related. The Relaxed Admixture Model, discussed in
Chang and Michael (this issue), essentially provides a measure of this sort.
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language contact has led to borrowing among languages, without resulting in a core
with distinctive phonemes or even a high degree of homogeneity.

The Core and Periphery technique is thus effective for identifying and delimiting
linguistic areas that are distinctive and relatively core-homogeneous, and easily handles
diffuse areas (though non-diffuseness poses no difficulties). And as we saw, the two
Andean subcores, along with their respective proximal circum-Andean regions, each
constitute distinctive, diffuse, and relatively core-homogeneous phonological areas.

Note that there is no intrinsic geographical or scale-based limitation to the tech-
nique. Due the nature of the dataset and the empirical questions that animated our
interest in areality, this paper examined areality within a continent, selecting a core
in a subregion of the continent and a set of control languages in another sub-region
of the continent. These practical considerations are incidental, however, and nothing
other than the rarity of suitable datasets prevents Core and Periphery to be applied
to considerably larger regions (e.g. with entire continents serving as cores), or using
languages from considerably more distant regions (e.g. on the opposite sides of major
oceans) as control languages.

7. Conclusion

We have presented in this paper a method for exploring linguistic areality that makes
use of a naive Bayes classifier to quantify the similarity between candidates members
of a linguistic area and a posited set of ‘core’ members of the area, with respect to
the features that distinguish those core languages from a set of ‘control’ languages
deemed extremely unlikely to be members of the area being explored. Versions of
this ‘Core and Periphery’ technique were developed for both single core and multiple
core analyses and applied to a concrete empirical test case: phonological areality in the
South American Andes and surrounding lowland areas. This application resulted in the
identification of several areas in which non-Andean languages show convergence with
Andean languages generally (in the case of the single core analysis) and more locally
to Southern Andean and North-Central subcores (in the case of the two core analysis).
These results confirm that Core and Periphery is a useful exploratory tool, since they are
generally plausible, in light of our knowledge of contact between Andean and neighbor-
ing non-Andean societies, yet at the same time identify instances of convergence which
have previously gone unnoticed.

This initial application of Core and Periphery suggests a number of directions
for the future development of this approach. First, since the similarity measure used
by Core and Periphery relies on abstract features that impose few restrictions on the
kind of linguistic traits that serve as the basis of classification, this method can be
extended to morphological, syntactic, or even pragmatic, traits, as long as clumps of
non-independent traits are small relative to the total number of traits. The application
of Core and Periphery to non-phonological datasets is an obvious next step.

Second, as discussed in §4.5, statistical non-independence between phonological
segments frustrates attempts to interpret NBC scores as simple probabilities of core vs.
control group membership, and consequently hamstrings our ability to employ Core
and Periphery as a quantitative test for areality. Though this property does not pose
problems for its use as an exploratory tool, the power of Core and Periphery would be
significantly enhanced by directly tackling the non-independence problem, suggesting
another area for future research.

The spatial dimension of Core and Periphery, which at this point manifests only
informally in linguists’ identification of core and periphery areas, and through qualita-
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tive observations about the spatial distribution of NBC scores, is another area in which
the technique could be usefully enriched. The analysis of NBC scores can be coupled
to spatial statistical measures, for example, to yield a quantitative perspective on the
gradience of fuzzy-edged linguistic areas. And rather than charactering distance solely
in idealized Euclidean terms, it could be cast in more realistic movement cost measures,
reflecting an understanding of space more finely attuned to human interactions with
the environment.
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Appendix A: Inventory regularization rules

We regularize phonological inventories in a procedural way, with a series of replace-
ment rules, as listed below. With consonants, we replace every sound on the left with
the sound on the right, unless the sound on the right is already in the inventory.

lj → L
J → Z
V→ B

With vowels, the procedure is similar, but more elaborate. As with consonants, we try to
replace each sound on the left with the sound on the right, but we also try to replace any
phoneme that contains the sound on the left by replacing the matched character with the
sound on the right. For example, the rule 0→ 1 will cause us also to try 0i→ 1i, 0:→ 1:, 0̃
→ 1̃, etc. These replacements are not carried out if the sound on the right already exists
in the inventory, either as itself or as part of another phoneme. The vowel replacement
rules are as follows.

0 → 1
W→ 1
@ → 1
2 → 1
U → u
O → o
7 → o
I → i
e → i
E → e
A → a

These rules are applied in order. For example, if 0 has been replaced with 1 via the
first rule, it is then no longer possible for W to be replaced with 1 via the second rule.

Finally, if the language has nasal harmony, we add the nasal version of each oral
vowel to the inventory.

Appendix B: Naive Bayes classifier

B.1. Model and data

A naive Bayes classifier is underpinned by a probabilistic generative model. What
follows is a formal description of the model and data, as used in our analyses. The
data can be viewed as having three parts.

r An N × L binary feature matrix X , where Xnl denotes the absence (0) or
presence (1) of feature l in the phonological inventory of training language
n. N is the number of training languages and L is the number of features.r A set of labels for each training language Y = (Y1, . . . , YN ), where
Yn ∈ {1, . . . ,K} denotes the class of language n. These labels are supplied
by the analyst before analysis begins, as are the total number of classes K.
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r A set of binary features for the test language X0 = (X01, . . . , X0L), where
X0l denotes the absence (0) or presence (1) of feature l in the phonological
inventory of the test language.

The generative procedure that underlies the data is summarized as follows.

r For each class k and each feature l, generate a feature frequency via a beta
distribution: θkl ∼ Beta(α, β).r For each language pick a label from a categorical distribution: Y = k with
probability πk. This is done for all training languages and the test langauge
as well, but the outcome is observed for just the training languages.r For each language n, generate each feature l via a weighted coin toss:
Xnl ∼ Bernoulli(θYnl). The subscript on θ refers to the class denoted by Yn
(the class of language n) and the feature denoted by l.

We posit that θkl is generated by a beta distribution for mathematical convenience:
the beta distribution is the conjugate prior distribution (Raiffa and Schlaifer, 1961) of the
Bernoulli distribution. Also favoring this choice is the fact that feature frequencies seem
empirically to form such a distribution.

In our analyses, we set πk = 1/K, but in other contexts it may make more sense to
set πk = Nk/N , where Nk is the number of training languages in class k. Settings for α
and β will be discussed in §B.3.

B.2. Inference

The purpose of the model in §B.1 is to make it possible to infer the class of the test
language. This entails computing pk, the probability that the test language is in each
class k, conditioned on the data. In standard notation, this is P(Y0 = k | X0, X, Y ). By
Bayes’ Theorem,

P(Y0 = k | X0, X, Y ) =
P(X0 | Y0 = k,X, Y ) P(Y0 = k | X,Y )

P(X0 | X,Y )
.

Writing f(k) for P(X0 | Y0 = k,X, Y ), this expands to

P(Y0 = k | X0, X, Y ) =
f(k)πk

f(1)π1 + · · ·+ f(K)πK
.

Since the L features of the test language are generated independently, conditioned on
the class of the test language, we have f(k) =

∏L
l=1 fl(k), where fl(k) = P(X0l | Y0 =

k,X·l, Y ) and X·l denotes elements of the lth column of X . Then,

fl(k) =
P(X0l, X·l | Y0 = k, Y )

P(X·l | Y )
.
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Note that Xml and Xnl are fully independent if language m and language n belong to
different classes. Thus the denominator factorizes into

P(X·l | Y ) =

K∏
j=1

P(XIj l | Y ),

where Ij denotes the set of test languages belonging to class j, and XIj l denotes the
entries indexed by Ij in the lth column of X . The numerator is identical, except in the
factor corresponding to class k. After casting out factors that are identical in the top and
bottom, we are left with

fl(k) =
P(X0l, XIkl | Y0 = k, Y )

P(XIkl | Y )
.

Writing fθkl
(z) for the density function of θkl ∼ Beta(α, β), this expands to

fl(k) =

∫ 1

0 P(X0l, XIkl | θkl = z, Y0 = k, Y )fθkl
(z)dz∫ 1

0 P(XIkl | θkl = z, Y )fθkl
(z)dz

=

∫ 1

0

[∏
n∈{0}∪Ik z

Xnl(1− z)1−Xnl

]
zα(1− z)βdz

∫ 1

0

[∏
n∈Ik z

Xnl(1− z)1−Xnl

]
zα(1− z)βdz

=

∫ 1

0 z
α+Nkl+X0l(1− z)β+Nk−Nkl+1−X0ldz∫ 1

0 z
α+Nkl(1− z)β+Nk−Nkldz

,

where Nkl is the number of training languages in class k with feature l and Nk is the
total number of training languages in class k. We state the results of these integrals in
terms of gamma functions before simplifying:

fl(k) =
Γ(α+Nkl +X0l)Γ(β +Nk −Nkl + 1−X0l)/Γ(α+ β +Nk + 1)

Γ(α+Nkl)Γ(β +Nk −Nkl)/Γ(α+ β +Nk)

=

{
(α+Nkl)/(α+ β +Nk) if X0l = 1,
(β +Nk −Nkl)/(α+ β +Nk) if X0l = 0.

B.3. Setting hyperparameters

In §4.2 we suggested setting α = β = 1/2, which corresponds to drawing feature fre-
quencies via θ ∼ Beta(1/2, 1/2). It would be better to find values for α and β such
that Beta(α, β) reflects how feature frequencies are actually distributed. Though feature
frequencies are hidden variables, we can estimate them via θ̂l = Nl/N , where Nl is the
number of languages in the entire dataset with feature l, and N is the total number
of languages. From these estimates we compute a sample mean µ =

∑L
l=1 θ̂l/L and a

sample variance σ2 =
∑L
l=1(θ̂l − µ)2/L. We set these equal to the mean and variance of
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Beta(α, β):

µ =
α

α+ β
,

σ2 =
αβ

(α+ β)2(α+ β + 1)
,

and solve for α and β to obtain

α =
µ2(1− µ)

σ2
− µ,

β =
µ(1− µ)2

σ2
− 1 + µ.

In our analyses, we use this procedure to estimate α and β before culling rare features,
and get α ≈ 0.071 and β ≈ 0.755.

One problem with the foregoing is that there may exist many features that we do not
observe. In our dataset there is a long tail of low-frequency features, and extrapolating
from this, it is not unreasonable to suppose that there may be a larger, or even infinite,
number of features that we do not observe, due to the fact that their feature frequencies
are extremely low. A naive Bayes classifier, despite working well in practice, is simply
unable to account for this possibility. For a new model that explicitly addresses this
issue, please see §7 of Thibaux and Jordan (2007).

Appendix C: Classification results

C.1. NBC scores for single core analysis

This section lists each language along with its score from the single core analysis in
§5.1. Languages are given by language codes, which can be looked up in §C.2. They
are ordered by the score, which represents how highland-like the language is. Training
languages (those that define the classes on which the classifier was trained) are marked
with A (Andean core) or C (control class).

A ayr 56.64
A caw 54.43
A ayr_chl 49.00
A ayr_muy 46.82
A cap 46.43
A jqr 44.05
A qul 43.78
A quz 43.01
A qvn_caj 26.62
C teh 26.48
A qwa 23.87

ame 22.61
A qvn_tar 22.53
A qxn 21.24
A ure 20.55

A qub 19.97
A qxw 19.32
A qxl 18.30

inj 16.69
A quk 16.25
A inb 16.16
A quw 15.77

quf 15.71
A qvc 14.06
A quy 12.83

qvo 12.30
qvs 11.42
qus 10.64

C ona_mtr 10.31
C ona 10.02

ccc 9.87
A qvi 9.59

mca 9.51
A kuz 9.39
C teh_tsh 9.18

cht 7.30
cbi 6.93
vil 6.74

C pue 6.21
C yaw 5.79

cag 5.72
C alc_sth 5.69
C alc_nth 5.47

tob_tks 5.11
kbh 5.03
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C alc_cnt 4.76
mtp 3.61
jeb 3.53
lec 3.35

C fun 3.20
cpc 3.06
cbu 2.99
moc 1.97
cpu 1.51
arl 1.18
tob_lng 0.54
ycn 0.26
bae 0.06
cpb -0.29
lul -0.31
gae -0.97
plg -1.10
ign -1.41
cav -1.56
rey -1.85
trn -1.91
rgr -1.94
bwi_cen -1.99
cox -2.01
pno -2.43
anb -2.56
zro -2.56
crq -2.57
gum -2.63
myr -2.86
dny -3.01
mcb -3.35
yvt -4.18
aca -4.37
tna -4.53
omg -4.58
kvn -4.73

C kgp -4.90
sya -5.33

C arn -5.38
aro -5.72
cot -6.36

C wap -6.80
pbb -6.82
ese_per -6.88
cui -7.02
kpc -7.03
knt -7.17
ywn -7.17
bwi_rng -7.39

kav -8.03
shp -8.12

C ter -8.15
ese_bol -8.20
pad -8.26
yrl -8.32
omc -8.56
cni -8.56
sha_ywn -8.58
ktx -8.64

C hix -8.78
mzp -8.81
cod -9.12
not -9.24
tit -9.28

C tpy -9.70
kbc -9.93
mbn -10.26
ito -10.38
pid -10.39
pbg -10.94
mpq -11.49
cul -11.93

C wba -11.93
brg -11.95
pib -12.09
guo -12.09

C xir -12.30
ura -12.45

C pab -12.49
kaq -12.54
cbt -12.63

C prr -12.66
C waw -12.73
C yag -12.77

mcf -13.06
sae -13.37
prq -13.48
iqu -13.51
yuz -14.24
boa -14.41
trr -14.45

C txi -14.53
cbb -14.60

C kzw_dzu -14.79
C aap -14.80

mpd -15.13
tuf -15.14

C arw -15.36
cbr -15.53

pcp -16.13
axb -16.13
pio -16.24
jaa_jmm -16.51

C aoc_tar -16.52
srq -16.79
cbv -17.12

C car_ven -17.19
C car_esr -17.19

pav -17.21
orw -17.51

C myp -17.68
xor -17.90
yup_mac -18.86

C pbh -19.21
mbp -19.29

C kbb -19.34
C guc -19.57

nuc -19.61
chb -19.68
yup_irp -19.72

C yar -20.06
jaa_jrw -20.28

C mbc -20.30
C guu -20.43

cao -20.76
arh -20.98

C ake -21.01
bmr -21.15
jru -21.20
cbd -21.76
hto -22.36
swx -22.83

C aoc_are -23.14
noj -23.17

C wca -23.37
umo -23.39
mcg -23.45
pev -23.45

C bor -23.52
C car_frg -23.55
C atr -24.28
C mch -24.66

yui -24.71
des -24.93
cub -25.20
ore -26.22
huu -26.28
acu -26.68

C tri -26.73
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unk -27.48
C asu -27.50

tav -27.52
tae -27.72
mts -27.81
jiv -27.89
bsn -28.21
pyn -28.59

C ako -28.68
C pak -28.96

cbs -29.47
C way -29.54

psx -30.49
adc -30.65
mcd -30.70
agr -31.13
yme -31.18
hub -31.90

C gub -32.77
ltn -33.03

C tqb -33.41
boa_mrn -33.60
kwi -34.37

C xiy -35.01
yaa -35.28
tba -35.30
slc -35.34

C gvp -36.56
wmd -36.69
amc -36.79
gta -36.90
con -36.96

C mmh -37.22
ash -37.28
gqn -38.18
nab_kth -38.80

C wau -38.90
ayo -38.91
cto -40.18

C plu -41.24
cof -42.73
oca -43.62
bdc -44.02

C jur -44.26
C mav -45.22
C guh -45.27
C sru -45.48
C api -45.76
C kpj -46.09

skf -46.43

jbt -46.58
cmi -47.42
yuq -47.56

C awt -47.63
pui -47.63
auc -47.90
emp -47.95

C kui -48.03
mpu -48.63
tnc -49.11
ano -49.16
kxo -49.68
inp -49.89

C tpn -49.91
C kyr -49.99

cax -50.20
kog -51.20
gvc -52.05

C yae -52.05
C bkq_wst -52.31

tpr -52.62
noa -52.79

C apy -52.83
C xet -52.83

gyr -52.90
mbr -52.93
irn -52.97
gvo -53.33
yad -53.44

C avv -53.45
C xsu -53.56

xwa -53.68
C xav -53.72
C awe -53.76
C zkp -53.83

aqz -53.85
C urb -54.03
C taf -54.08

coe -54.12
cas_cov -54.18

C opy -54.20
C myu -54.21
C mbl -54.33

tuo -54.60
gui_chn -54.70

C oym_jri -55.42
gug -55.44
cbg -55.50
axg -55.75
cyb -55.88

C kqq -56.55
arr -56.60

C pta -56.70
C kyz -56.88

tpj -57.16
C pto -57.20

mot -57.20
tca -57.29

C guq -57.35
C gvj -57.36

snn -57.38
amr -57.50

C asn -57.56
C bkq_est -57.59

nhd -57.66
C xri -57.79

apu -57.85
gui_izo -58.25

C gun -58.38
ceg -58.91
cbc -58.93
sri -58.93
tue -58.93

C kay -59.34
C xer -59.60

jua -59.66
myy -59.84
ark -59.87
kwa -60.01
sey -60.27

C kgk -60.50
C ram -60.83
C suy -61.45

sja -61.54
bao -61.74
mbj -61.78

C rkb -61.88
adw -61.92
pah -61.92
urz -61.92
pir -62.13

C oym_amp -62.45
cas_msa -62.59
cas_tsi -62.59

C yau -63.36
C apn -63.54

ktn -64.60
jup -64.99

C yrm_pac -65.21
C suy_tap -65.29
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C txu -65.38
C eme -66.96
C shb -67.99
C xra -68.02
C kre -69.16

C qpt -70.17
wyr -70.53
yab -70.90

C xok -77.43
C wca_yma -82.81

C wca_yae -82.81
C guu_ven -82.81
C xsu_kol -83.10
C guu_par -84.53

C.2. NBC scores for dual core analysis

This section lists each language along with its scores from the dual core analysis in §5.2.
Languages are given by language codes, which can be looked up in §C.2. The three
scores represent the resemblence that a language has to, respectively, the Northern-
Central Andean core, the Southern Andean core, and the control class.18 The languages
are ordered by the third score. Training languages (those that define the classes on
which the classifier was trained) are marked with N (Northern-Central Andean core),
S (Southern Andean core), or C (control class).

S ayr -45.29 45.29 -65.21
S caw -41.16 41.16 -60.77
S ayr_chl -42.32 42.32 -55.98
S ayr_muy -42.00 42.00 -53.69
S cap -55.78 53.36 -53.45
S quz -50.27 50.04 -51.60
S qul -40.66 40.66 -49.86
S jqr -29.38 29.38 -47.34
N qvn_caj 24.18 -24.18 -30.82

ame 27.84 -28.31 -28.82
N qwa 20.76 -20.76 -28.33
N qvn_tar 26.55 -26.75 -28.24
N qxn 18.84 -18.84 -25.03
N qxw 23.49 -23.74 -24.98
N quw 23.87 -34.08 -23.87
N inb 23.60 -31.38 -23.60
N qub 18.20 -18.20 -23.51
N quk 22.89 -25.47 -22.97
S ure -36.94 22.94 -22.94
C teh -25.02 22.79 -22.91

inj 21.93 -22.75 -22.51
quf 21.39 -23.49 -21.52
qvo 20.70 -36.27 -20.70
qvs 17.92 -26.48 -17.92

N qvc 17.24 -18.31 -17.65
mca -42.73 16.55 -16.55

N qvi 16.34 -23.52 -16.34
N quy 16.05 -17.97 -16.21
S kuz -36.79 14.28 -14.28

N qxl 13.04 -16.03 -13.10
C yaw 12.99 -24.19 -12.99
C ona -34.18 12.68 -12.68

cht 10.34 -18.30 -10.34
qus 8.45 -16.40 -8.45
cbi 8.15 -22.65 -8.15
jeb 7.90 -21.03 -7.90

C ona_mtr -20.34 6.55 -6.55
kbh 6.10 -24.72 -6.10

C alc_sth -25.24 5.98 -5.98
C alc_cnt -25.50 5.88 -5.88
C alc_nth -22.20 4.91 -4.91

mtp -23.74 3.70 -3.70
pno 3.44 -21.13 -3.44
vil -27.13 2.80 -2.80
cbu 2.49 -14.70 -2.49
cag -20.39 1.61 -1.61
anb 1.38 -20.59 -1.38
zro 1.38 -20.59 -1.38
sya 1.11 -22.64 -1.11
gae 0.83 -25.04 -0.83
myr 0.33 -28.03 -0.33
kav 0.29 -26.89 -0.29

C wap -0.15 -29.78 0.15
knt -0.21 -23.27 0.21
ywn -0.21 -23.27 0.21
ccc -0.49 -4.98 0.46
yvt -0.86 -25.79 0.86
shp -0.86 -21.71 0.86

18 The scores s1, s2, s3 are the log-odds of a language belonging to class 1, 2, or 3. A log-odds sk is related to
the probability pk of a language belonging to class k via the formula sk = log pk/(1− pk), as explained
in §4.4.
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omg -0.88 -20.44 0.88
lec -22.86 -1.17 1.17
ign -1.28 -16.96 1.28

C pue -15.11 -1.90 1.90
bwi_cen -2.12 -18.14 2.12
cav -2.31 -18.06 2.31

C teh_tsh -7.68 -2.32 2.32
lul -22.02 -2.46 2.46
sha_ywn -2.81 -22.91 2.81
rey -3.24 -16.81 3.24
tna -3.44 -23.21 3.44
bae -3.59 -12.42 3.59
arl -3.79 -12.02 3.79

C hix -4.41 -30.02 4.41
ktx -4.44 -24.02 4.44
plg -4.56 -18.15 4.56
cpc -4.96 -5.79 4.59
tob_tks -5.61 -8.50 5.56

C kgp -5.66 -19.07 5.66
aro -6.18 -28.09 6.18
dny -6.43 -14.17 6.43
gum -7.20 -17.06 7.20
cod -7.31 -21.88 7.31
kaq -7.50 -24.97 7.50

C fun -12.09 -7.55 7.54
crq -19.26 -7.60 7.60
cpu -12.81 -7.75 7.75

C arn -7.97 -18.26 7.97
cbt -7.98 -26.99 7.98
ycn -8.08 -10.97 8.03
bwi_rng -8.12 -25.20 8.12
cpb -14.13 -8.32 8.31
tob_lng -8.36 -17.21 8.36
cox -9.06 -17.94 9.06
ura -9.27 -28.41 9.27
pbb -9.44 -13.17 9.42
mcb -9.99 -18.09 9.99
kvn -10.05 -18.10 10.05
moc -10.47 -12.14 10.30
mpq -10.32 -29.60 10.32
pid -37.96 -10.53 10.53
yrl -10.62 -25.44 10.62
kpc -10.76 -20.44 10.76

C xir -11.28 -30.52 11.28
mcf -11.32 -30.34 11.32
iqu -11.33 -24.25 11.33
trn -13.74 -11.86 11.71

C yag -11.78 -27.24 11.78
rgr -11.87 -19.02 11.87
pad -12.05 -27.20 12.05

C waw -12.32 -28.60 12.32
ese_per -12.39 -18.92 12.38

C prr -12.88 -26.03 12.88
guo -13.08 -30.49 13.08
cui -13.25 -18.93 13.25
nuc -13.56 -30.79 13.56
boa -36.86 -13.92 13.92
ese_bol -13.94 -19.80 13.94
cbv -13.97 -36.46 13.97

C kzw_dzu -14.00 -34.23 14.00
pcp -14.47 -28.89 14.47
brg -15.16 -24.92 15.16

C myp -15.22 -29.55 15.22
C txi -15.22 -30.75 15.22

mpd -15.36 -28.59 15.36
yuz -15.45 -31.66 15.45
cot -16.17 -16.44 15.61
pio -15.97 -30.43 15.97

C pab -16.02 -23.31 16.02
not -16.21 -23.36 16.21
cni -16.33 -18.74 16.24

C aap -16.26 -27.32 16.26
kbc -16.37 -25.45 16.37
jaa_jmm -16.42 -32.83 16.42
trr -16.60 -24.26 16.60
mbp -16.68 -45.01 16.68
aca -17.16 -19.45 17.06
mzp -25.54 -17.11 17.11
sae -17.48 -24.26 17.48
omc -17.67 -19.32 17.49
mbn -18.33 -18.13 17.53
srq -17.60 -28.68 17.60
pbg -17.76 -22.34 17.75
pyn -17.88 -43.67 17.88

C wba -17.92 -23.54 17.91
cao -17.98 -31.90 17.98

C ter -18.89 -18.55 18.02
pib -18.64 -23.23 18.63
ito -28.29 -18.63 18.63
mts -18.94 -42.01 18.94

C arw -19.01 -28.63 19.01
cbb -19.01 -26.34 19.01
jiv -19.16 -41.16 19.16
swx -19.63 -45.96 19.63

C car_ven -19.67 -28.90 19.67
C car_esr -19.67 -28.90 19.67

cbd -19.78 -42.81 19.78
jaa_jrw -19.97 -31.58 19.97
cul -20.35 -21.23 20.00
yup_mac -20.02 -34.23 20.02
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prq -20.09 -24.65 20.08
adc -20.29 -45.59 20.29
cbr -20.35 -27.16 20.34
bmr -20.39 -42.26 20.39
axb -26.75 -20.90 20.90
mcd -20.97 -44.99 20.97

C tpy -24.03 -21.06 21.01
acu -21.02 -36.99 21.02
tuf -21.37 -26.68 21.36
orw -21.62 -27.55 21.62
noj -21.68 -46.11 21.68

C yar -21.74 -31.88 21.74
umo -22.10 -37.46 22.10
arh -22.24 -43.66 22.24

C guc -22.25 -31.75 22.25
chb -22.44 -31.45 22.44
xor -22.62 -28.80 22.62
yup_irp -22.66 -31.03 22.66

C pbh -22.73 -31.06 22.73
tit -22.81 -25.24 22.73
hto -22.92 -42.98 22.92
cbs -23.12 -44.17 23.12

C guu -23.22 -31.05 23.22
des -23.55 -40.53 23.55
huu -23.74 -43.91 23.74

C kbb -23.77 -31.12 23.77
pav -23.95 -27.20 23.91
yui -23.95 -41.15 23.95
jru -24.20 -32.53 24.20
cub -24.33 -38.01 24.33

C aoc_tar -28.70 -24.77 24.75
agr -24.91 -42.67 24.91

C bor -25.29 -42.71 25.29
hub -25.53 -44.19 25.53

C wca -25.62 -33.20 25.61
tav -26.19 -43.13 26.19
bsn -26.28 -43.87 26.28
ore -26.91 -43.77 26.91

C aoc_are -27.27 -33.21 27.27
mcg -27.34 -34.43 27.34
pev -27.34 -34.43 27.34
psx -27.45 -44.53 27.45

C car_frg -27.72 -33.61 27.72
C mbc -31.93 -27.76 27.74

kwi -27.85 -49.32 27.85
C xiy -28.16 -52.07 28.16
C ake -32.37 -28.69 28.66

yaa -28.94 -46.74 28.94
yme -29.39 -40.98 29.39

C way -29.83 -38.00 29.83

C mch -34.08 -31.51 31.43
C atr -31.64 -39.83 31.64

unk -32.02 -38.89 32.02
C mmh -32.07 -47.31 32.07
C tri -35.13 -33.47 33.30

amc -33.31 -45.99 33.31
C asu -33.56 -35.73 33.45

cto -66.22 -34.05 34.05
C pak -34.47 -36.39 34.33
C ako -38.34 -34.62 34.59

tae -35.89 -35.33 34.87
ltn -35.25 -41.60 35.25

C wau -35.27 -47.50 35.27
slc -35.43 -51.69 35.43
tba -36.37 -47.75 36.37
gta -37.40 -52.84 37.40

C gvp -38.03 -43.63 38.03
C gub -38.05 -43.29 38.04
C tqb -38.85 -44.80 38.85

wmd -43.80 -39.01 39.01
gqn -39.24 -48.03 39.24
ayo -39.39 -55.43 39.39
boa_mrn -39.75 -47.66 39.75

C plu -40.42 -56.53 40.42
nab_kth -40.48 -46.57 40.47
oca -40.56 -58.98 40.56
ash -40.70 -47.55 40.70

C jur -41.25 -61.61 41.25
C kpj -41.86 -54.95 41.86
C sru -42.17 -63.64 42.17

cof -43.34 -54.45 43.34
skf -43.53 -56.78 43.53
con -43.87 -47.34 43.84
jbt -44.94 -56.37 44.94
cmi -45.96 -58.20 45.96
emp -47.04 -61.87 47.04
mpu -47.10 -55.48 47.10
bdc -47.25 -50.79 47.22
mbr -47.34 -65.65 47.34

C kui -47.63 -55.46 47.63
kxo -47.72 -55.82 47.72

C awt -48.09 -57.68 48.09
C api -48.47 -53.34 48.46
C kyr -48.65 -63.49 48.65

pui -48.77 -52.89 48.76
kog -49.02 -67.79 49.02
cax -49.08 -57.55 49.08
tnc -49.12 -57.84 49.12

C tpn -49.61 -58.51 49.61
axg -49.98 -71.80 49.98
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C mav -51.54 -50.38 50.11
auc -50.32 -57.10 50.31

C zkp -50.40 -61.99 50.40
C bkq_wst -50.66 -67.73 50.66

cyb -50.99 -65.58 50.99
gvo -51.05 -65.35 51.05

C guh -52.00 -53.51 51.80
yad -51.85 -60.52 51.85
xwa -52.01 -61.68 52.01

C bkq_est -52.03 -74.93 52.03
ano -52.20 -56.54 52.19

C myu -52.33 -66.92 52.33
C apy -52.43 -62.84 52.43

tca -52.43 -72.54 52.43
C xsu -52.55 -58.74 52.55

mot -53.33 -65.25 53.33
C opy -53.34 -67.77 53.34
C xet -53.55 -61.64 53.55
C mbl -54.18 -58.67 54.17
C kqq -54.25 -71.82 54.25
C guq -54.26 -74.69 54.26

inp -56.84 -54.50 54.41
C xav -54.71 -63.45 54.71

yuq -55.70 -55.35 54.82
C avv -54.84 -59.42 54.83

cbc -54.90 -70.63 54.90
sri -54.90 -70.63 54.90
tue -54.90 -70.63 54.90
myy -55.24 -70.71 55.24
kwa -55.39 -70.83 55.39
cas_cov -61.73 -55.76 55.75
gui_chn -55.81 -59.87 55.80
gvc -55.88 -59.12 55.84
gyr -56.35 -58.20 56.20
ceg -56.25 -77.41 56.25

C xer -56.31 -71.12 56.31
C awe -56.40 -59.39 56.35
C xri -56.54 -60.91 56.53

cbg -62.13 -56.61 56.61
tpr -60.40 -56.66 56.63
arr -56.69 -65.84 56.69

C yae -60.98 -57.06 57.04
C rkb -57.14 -72.04 57.14

bao -57.14 -72.61 57.14
C urb -57.36 -60.36 57.31

amr -64.58 -57.36 57.35
C taf -57.70 -59.19 57.50

coe -58.70 -57.96 57.57
tpj -57.71 -64.85 57.71
aqz -58.29 -58.89 57.85
noa -58.06 -60.64 57.99

mbj -58.08 -73.86 58.08
gug -58.38 -60.05 58.21
gui_izo -58.37 -61.00 58.30
nhd -58.38 -67.36 58.38

C pto -58.51 -68.83 58.51
C pta -58.58 -63.17 58.57

tuo -58.74 -60.79 58.61
snn -58.63 -72.48 58.63
irn -59.03 -61.29 58.94
apu -59.31 -60.22 58.97

C kgk -59.24 -68.07 59.24
C oym_jri -59.94 -60.51 59.49
C suy -59.58 -68.83 59.58
C ram -59.64 -65.41 59.63

ark -59.91 -65.28 59.91
jua -59.95 -68.53 59.95

C kyz -60.00 -67.60 60.00
C asn -60.05 -66.61 60.05

pir -60.30 -72.99 60.30
C gun -60.57 -63.67 60.52
C gvj -60.85 -62.65 60.70
C yau -61.85 -68.79 61.85
C txu -61.93 -79.05 61.93

sey -61.94 -70.51 61.94
C apn -62.30 -68.13 62.30

cas_msa -69.05 -62.58 62.58
cas_tsi -69.05 -62.58 62.58

C kay -63.05 -64.04 62.73
sja -71.23 -63.63 63.63
adw -63.87 -65.53 63.70
pah -63.87 -65.53 63.70
urz -63.87 -65.53 63.70

C xra -70.88 -64.04 64.04
C suy_tap -64.23 -68.97 64.22
C yrm_pac -66.87 -64.51 64.42

ktn -67.05 -65.20 65.05
yab -65.10 -78.96 65.10

C oym_amp -65.82 -65.94 65.18
C eme -65.98 -81.60 65.98

jup -66.41 -70.51 66.39
C shb -70.88 -66.59 66.58
C kre -68.99 -72.93 68.97
C qpt -69.42 -73.10 69.40

wyr -73.40 -71.49 71.35
C xok -76.23 -77.24 75.92
C xsu_kol -84.37 -77.31 77.31
C wca_yma -84.37 -78.15 78.15
C wca_yae -84.37 -78.15 78.15
C guu_ven -84.37 -78.15 78.15
C guu_par -84.10 -81.43 81.36
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Appendix D: Language codes

This section lists the language codes used in this paper in alphabetical order. The
vast majority of these codes are standard ISO-639 language codes, but they have been
supplemented where necessary by three-letter extensions of related languages, or in a
small number of cases, wholly new codes. Note that the use of a three-letter extension
does not constitute a claim regarding the status of the variety so denoted as a dialect of
the variety denoted by the first three letters, if indeed it even denotes a variety (this is
not the case for [alc], for example, since no single ‘Alacalufan’ language exists).

aap Arára, Pará
aca Achagua
acu Achuar-Shiwiar
adc Arara do Acre
adw Amundava
agr Aguaruna
ake Ingarikó
ako Akurio
alc_cnt Alacalufe (Central)
alc_nth Kawesqar
alc_sth Alacalufe (Southern)
amc Amahuaca
ame Yánesha
amr Amarakaeri
anb Andoa
ano Andoke
aoc_are Pemon (Arekuna dialect)
aoc_tar Pemon (Tarepang dialect)
api Apiaká
apn Apinayé
apu Apurinã
apy Apalaí
aqz Akuntsú
arh Ika
ark Arikapú
arl Arabela
arn Mapudungun
aro Araona
arr Karo
arw Lokono
ash AP1wa
asn Asurini do Xingú
asu Asuriní do Tocantins
atr Waimiri-Atroarí
auc Waorani
avv Avá-Canoeiro
awe Awetí
awt Araweté
axb Abipon
axg Arára do Mato Grosso
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ayo Ayoreo
ayr Aymara (Central dialect)
ayr_chl Aymara (Chilean dialect)
ayr_muy Muylaq’ Aymara
bae Baré
bao Waimaha
bdc Emberá-Baudó
bkq_est Bakairí (Eastern dialect)
bkq_wst Bakairí (Western dialect)
bmr Muinane
boa Bora
boa_mrn Miraña
bor Borôro
brg Baure
bsn Barasana-Eduria
bwi_cen Baniwa (Central)
bwi_rng Baniwa (Rio Negro)
cag Chulupí
cao Chácobo
cap Chipaya
car_esr Carib (Suriname dialect)
car_frg Carib (French Guiana dialect)
car_ven Carib (Venezuela dialect)
cas_cov Mosetén de Covendo
cas_msa Mosetén de Santa Ana
cas_tsi Tsimané
cav Cavineña
caw Callawaya
cax Bés1ro
cbb Cabiyarí
cbc Karapanã
cbd Carijona
cbg Chimila
cbi Cha’palaa
cbr Cashibo-Cacataibo
cbs Kashinawa
cbt Shawi
cbu Candoshi-Shapra
cbv Kakua
ccc Chamicuro
ceg Chamacoco
chb Muisca
cht Cholón
cmi Emberá-Chamí
cni Asháninka
cod Kokama-Kokamilla
coe Koreguaje
cof Tsáfiki
con Cofán
cot Caquinte
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cox Nanti
cpb Ashéninka (Ucayali-Yurúa dialect)
cpc Ashéninka (Apurucayali dialect)
cpu Ashéninka (Pichis dialect)
crq Chorote (Iyo’wujwa and Iyowa’ja dialects)
cto Emberá-Catío
cub Kubeo
cui Cuiba
cul Kulina
cyb Cayubaba
des Desano
dny Dení
eme Emerillon
emp Northern Emberá
ese_bol Ese Ejja (Bolivia)
ese_per Ese Eja (Peru)
fun Yaathe
gae Warekena
gqn Kinikinao
gta Guató
gub Guajajára
guc Wayúu
gug Paraguayan Guaraní
guh Guahibo
gui_chn Chiriguano (Chané dialect)
gui_izo Chiriguano (Izoceño dialect)
gum Guambiano
gun Mbyá
guo Guayabero
guq Aché
guu Yanomamö
guu_par Yanomam1 of Parawau
guu_ven Yanomam1 of Venezuela
gvc Wanano
gvj Guajá
gvo Gavião do Jiparaná
gvp Gavião do Pará
gyr Guarayu
hix Hixkaryána
hto Huitoto, Minica
hub Huambisa
huu Huitoto, Murui
ign Ignaciano
inb Inga (Highland dialect)
inj Inga (Jungle dialect)
inp Iñapari
iqu Iquito
irn MyÌČky
ito Itonama
jaa_jmm Jamamadí
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jaa_jrw Jarawara
jbt Jabutí
jeb Shiwilu
jiv Shuar
jqr Jaqaru
jru Japreria
jua Júma
jup Hup
jur Jurúna
kaq Capanahua
kav Katukína
kay Kamayurá
kbb Kaxuiâna
kbc Kadiwéu
kbh Camsá
kgk Kaiwá
kgp Kaingang
knt Katukína (Panoan)
kog Kogi
kpc Curripaco
kpj Karajá
kqq Krenak
kre Panará
ktn Karitiâna
ktx Kaxararí
kui Kuikúro-Kalapálo
kuz Kunza
kvn Border Kuna
kwa Dâw
kwi Awa-Cuaiquer
kxo Kanoé
kyr Kuruáya
kyz Kayabí
kzw_dzu Karirí-Xocó (DzubukuaÌĄ dialect)
lec Leco
ltn Latunde
lul Lule
mav Sateré-Mawé
mbc Macushi
mbj Nadëb
mbl Maxakalí
mbn Macaguán
mbp Damana
mbr Nukak
mca Maka
mcb Matsigenka
mcd Sharanawa
mcf Matsés
mcg Mapoyo
mch Yekwana
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mmh Mehináku
moc Mocoví
mot Barí
mpd Manchinere
mpq Matís
mpu Makuráp
mtp Wichí (Mision la Paz dialect)
mts Yora
myp Pirahã
myr Muniche
myu Mundurukú
myy Macuna
mzp Movima
nab_kth Kithaulhu
nhd Nhandeva
noa Woun Meu
noj Nonuya
not Nomatsigenga
nuc Nukini
oca Ocaina
omc Mochica
omg Omagua
ona Ona
ona_mtr Haush
opy Ofayé
ore Máíh1ki
orw Oro Win
oym_ampWayampi (Ampari dialect)
oym_jri Wayampi (Alto Jarí dialect)
pab Paresí
pad Paumarí
pah Tenharim
pak Parakanã
pav Wari’
pbb Páez
pbg Paraujano
pbh Panare
pcp Pacahuara
pev Pémono
pib Yine
pid Piaroa
pio Piapoco
pir Piratapuyo
plg Pilagá
plu Palikúr
pno Panobo
prq Ashéninka (Perené dialect)
prr Puri
psx Pisamira
pta Pai Tavytera
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pto Zo’é
pue Puelche
pui Puinave
pyn Poyanáwa
qpt Parkateje
qub Huallaga Huánuco Quechua
quf Ferreñafe Quechua
quk Chachapoyas Quechua
qul Bolivian Quechua (Northern and Southern dialects)
qus Santiago del Estero Quechua
quw Tena Quechua
quy Ayacucho Quechua
quz Cuzco-Collao Quechua
qvc Cajamarca Quechua
qvi Imbabura Quichua
qvn_caj North Junín Quechua (San Pedro de Cajas dialect)
qvn_tar North Junín Quechua (Tarma dialect)
qvo Napo Quichua
qvs San Martin Quechua
qwa Ancash Quechua (Sihuas and Corongo dialects)
qxl Salasca Quechua
qxn Huaylas-Conchucos Quechua
qxw Jauja-Huanca Quechua
ram Canela
rey Reyesano
rgr Resígaro
rkb Rikbaktsa
sae Sabanê
sey Secoya
sha_ywn Shanenawa
shb Ninam of Ericó
shp Shipibo
sja Epena
skf Sakirabiá
slc Sáliba
snn Siona
sri Siriano
srq Sirionó
sru Suruí
suy Suyá
suy_tap Tapayuna
swx Suruahá
sya Saynawa
tae Tariana
taf Tapirapé
tav Tatuyo
tba Aikanã
tca Ticuna
teh Tehuelche
teh_tsh Teushen
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ter Terêna
tit Tinigua
tna Tacana
tnc Tanimuca-Retuarã
tob_lng Toba (Lañagashik dialect)
tob_tks Toba (Takshek dialect)
tpj Tapieté
tpn Tupinambá
tpr Tuparí
tpy Trumai
tqb Tembé
tri Trió
trn Trinitario
trr Taushiro
tue Tuyuca
tuf Tunebo (Central dialect)
tuo Tucano
txi Ikpeng
txu Mebengokre
umo Umotína
unk Enawené-Nawé
ura Urarina
urb Kaapor
ure Uru
urz Uru-Eu-Wau-Wau
vil Vilela
wap Wapichana
wau Waurá
waw Waiwai
way Wayana
wba Warao
wca Yanomámi
wca_yae Yanomae of Demini/Tototopi
wca_ymaYanomama of Papiu
wmd Mamaindé
wyr Wayoró
xav Xavánte
xer Xerénte
xet Xetá
xir Xiriâna
xiy Xipaya
xok Xokleng
xor Korubo
xra Krahô
xri Krinkati-Timbira
xsu Sanumá
xsu_kol Sanömá of Kolulu
xwa Kwaza
yaa Yaminawa
yab Yuhup
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yad Yagua
yae Pumé
yag Yahgan
yar Yabarana
yau Hoti
yaw Yawalapití
ycn Yucuna
yme Yameo
yrl Nheengatú
yrm_pac Yãroamë of Serra do Pacu/Ajarani
yui Yurutí
yup_irp Yukpa (de Irapa)
yup_mac Yukpa (Macoíta)
yuq Yuqui
yuz Yurakaré
yvt Yavitero
ywn Yawanawa
zkp Kaingáng, São Paulo
zro Sápara
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